Machine safety
Prevention of mechanical hazards

Fixed guards and safety distances
GUIDE RG-597
Fixed guards and safety distances
Research and writing
Laurent Giraud, Ph. D., junior engineer, researcher, Research Department, IRSST

Project management
Benôt Lafamme, engineer, prevention-inspection advisor, Direction de la prévention-inspection, CSST

Collaboration
Jean Desputeau, inspector, Direction régionale de l’Île-de-Montréal, CSST
Donald Duchesne, engineer, prevention-inspection consultant, Direction de la prévention-inspection, CSST
Gilles Gagnon, engineer, prevention-inspection consultant, Direction de la prévention-inspection, CSST
Pierre Guay, engineer, team leader in prevention-inspection, Direction régionale de la Yamaska, CSST
Benôt Lafamme, engineer, prevention-inspection consultant, Direction de la prévention-inspection, CSST
André Paillé, engineer, inspector, Direction régionale de Lanaudière, CSST
Conrad Trudel, ergonomist, team leader in prevention-inspection, Direction régionale de Longueuil, CSST
François Trudel, engineer, inspector, Direction régionale de l’Abitibi-Témiscamingue, CSST

Coordination
Catherine Bérubé, communications consultant, Direction des communications, CSST

Translation
Helen Fleischauer

Graphic design and computer graphics
Diane Urbain, Direction des communications, CSST
Mario Saucier, Studio M. Saucier inc.

Illustrations
Steve Bergeron

Original title:
Sécurité des machines - Prévention des phénomènes dangereux d’origine mécanique, protecteurs fixes et distances de sécurité

Acknowledgements
We want to thank the INRS for allowing us to use brochure ED 807 entitled Sécurité des machines et des équipements de travail – Moyens de protection contre les risques mécaniques; it served as the scientific basis for this document.

We also want to thank Réal Bourbonnière, engineer, for his contribution to writing the section on general risk-management principles based on IRSST guide R-405 entitled Guide de conception des circuits de sécurité : introduction aux catégories de la norme ISO 13849-1:1999 (version corrigée).

© Institut de recherche Robert-Sauvé en santé et en sécurité du travail (IRSST) et Commission de la santé et de la sécurité du travail du Québec (CSST)
Legal deposit – Bibliothèque et Archives nationales du Québec, 2009
ISBN 978-2-550 (French version)
Preface

This guide mainly discusses the prevention of mechanical hazards. It describes methods for eliminating hazards at source or for reducing them, as well as ways to protect against them by using fixed guards.

The risk reduction or distance protection principles presented in the guide are general and are appropriate for the majority of machines. For some machines (for example, conveyors, metal presses, drills, rubber machines, etc.), before applying the generic solutions proposed in this guide, one should consult Québec regulations, standards relating to these machines (ISO, CSA, ANSI, etc.), or the technical guides published by the CSST (such as the guide Sécurité des convoyeurs à courroie), or by other organizations (ASP, INRS, IRSST, etc.), which can provide details on how to ensure the safety of these machines.

This guide is not an exhaustive collection of solutions, but it covers some of the currently known protection principles. For more information on machine safety, refer to the bibliography at the end of the document, or consult the Web site: www.centredoc.csst.qc.ca.
Table of contents

Introduction

9

Section 1 General information

11

1.1 Plan of the guide 11
1.2 Current laws and regulations 12
1.3 Definitions of the terms used in this guide 14

Section 2 General risk-management principles

19

2.1 Risk assessment 20
 2.1.1 Risk analysis 20
 2.1.2 Risk evaluation 23
2.2 Risk reduction 24
 2.2.1 Hazard elimination and risk reduction 24
 2.2.2 Guards and protective devices 24
 2.2.3 Warnings, work methods and personal protective equipment 25
 2.2.4 Training and information 25
 2.2.5 Verification of the final result 25

Section 3 Guards

27

3.1 Fixed guards 28
3.2 Choice of type of guards 30

Section 4 Protection against crushing hazards

31

4.1 Protection using a minimum gap between the moving components 31
4.2 Protection by reducing the forces and energy levels of moving components 33
Section 5 Safeguarding by distance

5.1 Access by reaching upwards 35
5.2 Access by reaching over a fixed distance guard 36
5.3 Access by reaching through an opening in a guard 38
 5.3.1 Openings in the guard 38
 5.3.2 Tunnel guards 40
 5.3.3 Limiting movement 41
5.4 Access by reaching under a guard 41
 5.4.1 Lower and upper limbs 42
 5.4.2 Lower limbs only 43
 5.4.3 Limiting movement 43

Section 6 Protection of in-running nips

6.1 Creation of in-running nips 45
6.2 Delimiting the drawing-in zone 47
6.3 General information on the use of fixed nip guards 49
 6.3.1 Protection of two cylinders in contact 50
 6.3.2 Protection of two cylinders not in contact 51
 6.3.3 Protection of a cylinder close to a stationary component 51
 6.3.4 Protection of a cylinder in contact with a stationary flat surface 52
 6.3.5 Protection of a cylinder in contact with a belt or a flat moving component 52

Appendix

Appendix A Quick reference: Hazards 53
Appendix B Annex B of ISO 14120:2002 59
Appendix C Figure 1 of ISO 12100-2:2003 61
Appendix D Examples of use of Tables 5-1 and 5-2 63

References 67

Bibliography 69
Figure 1	Risk reduction hierarchy [1]	9
Figure 1	Possible location of the danger zone	11
Figure 2-1	Risk reduction management [1]	19
Figure 2-2	Elements of risk	21
Figure 2-3	Risk graph	21
Figure 3-1	Fixed enclosing guard	28
Figure 3-2	Fixed distance guard	29
Figure 3-3	Fixed nip guard	29
Figure 4-1	Minimum gap to avoid crushing hazards	31
Figure 4-2	Possible modifications to a worm drive to protect only the hand	32
Figure 4-3	Minimum gap between the robot and the guard (safety zone provided in the safety enclosure)	32
Figure 4-4	Protection by reducing the forces and energy levels of moving components	34
Figure 5-1	Possible location of the danger zone	35
Figure 5-2	Access by reaching upwards	35
Figure 5-3	Access by reaching over a guard	36
Figure 5-4	Access by reaching through a guard	38
Figure 5-5	Shape of openings in guards (slot, square, or circle)	38
Figure 5-6	Safety scale	40
Figure 5-7	Irregular-shaped opening	40
Figure 5-8	Tunnel guard	40
Figure 5-9	Safeguarding by distance for a worm drive	41
Figure 5-10	Plastic crusher equipped with chicanes	41
Figure 5-11	Access from below a guard	41
Figure 6-1	In-running nip created by two cylinders in contact	45
Figure 6-2	In-running nips created by two cylinders not in contact (identical, with a different coating or a different diameter)	45
Figure 6-3	In-running nip created by a cylinder close to a stationary object	46
Figure 6-4	In-running nip created by the winding of material	46
Figure 6-5	Use of a retractable cylinder at the juncture between two conveyor belts	46
Figure 6-6	Perimeter of the drawing-in zone	47
Figure 6-7	In-running nip created by two cylinders in contact	47
Figure 6-8	In-running nip created by a cylinder in contact with a belt	48
Figure 6-9	In-running nip created by two cylinders in contact with a sheet of material	48
Figure 6-10	In-running nip created by two cylinders not in contact	49
Figure 6-11	Nip guard – Spacing and geometry	49
Figure 6-12	Nip guard for two cylinders in contact	50
Figure 6-13	Prevention during the design step for two cylinders not in contact	51
Figure 6-14	Prevention during the design step for one cylinder and one stationary component	51
Figure 6-15 Nip guards for a cylinder in contact with a stationary flat surface 52
Figure 6-16 Nip guards for a cylinder in contact with a belt 52
Figure B Chart for the selection of guards according to the number and location of hazards 59
Figure C Guidelines to help make the choice of safeguards against hazards generated by moving parts 61
Figure D-1 Fixed distance guard – Example 1 64
Figure D-2 Fixed distance guard – Example 2 65

List of tables

Tableau 1 Current laws and regulations 12
Tableau 4 Maximum values of force and energy 34
Tableau 5-1 High risk – Reaching over a guard 37
Tableau 5-2 Low risk – Reaching over a guard 37
Tableau 5-3 Relationship between maximum opening and safety distance “sd” 39
Tableau 5-4 Reaching under a guard (lower limbs only) 42
Introduction

When machine-related mechanical hazards (refer to the quick reference in Appendix A) cannot be eliminated through inherently safe design, they must then be reduced to an acceptable level, or the hazards that cause them must be isolated from the workers by guards that allow the minimum safety distances to be respected.

Most of the risks related to mechanical hazards can be reduced to acceptable forces or energy levels (see Table 4 in point 4.2) by applying a risk reduction strategy (see Figure 1). If this is impossible, the hazards must be isolated from people by guards that maintain a safety distance between the danger zone and the people, with the main result being to reduce access to the danger zone.

The main factors to be taken into consideration so that guards are effective are:

- the accessibility to the danger zone by the different parts of the human body;
- the anthropometric dimensions of the different parts of the human body;
- the dimensions of the danger zones as well as their position in space and in relation to the ground or the working platform.

1. In this guide, references are in brackets [] and the list of references is at the end of the document.