Équipements de protection

Études et recherches

ANNEXE RA-582

Réduction de la distance de garde en tête des excavations étançonnées par un tuyau en tôle d'acier ondulé galvanisé (TTAOG)

André Lan Renaud Daigle Denis LeBoeuf Omar Chaallal

Solidement implanté au Québec depuis 1980, l'Institut de recherche Robert-Sauvé en santé et en sécurité du travail (IRSST) est un organisme de recherche scientifique reconnu internationalement pour la qualité de ses travaux.

NOS RECHERCHES

Mission

travaillent pour vous !

Contribuer, par la recherche, à la prévention des accidents du travail et des maladies professionnelles ainsi qu'à la réadaptation des travailleurs qui en sont victimes.

Offrir les services de laboratoires et l'expertise nécessaires à l'action du réseau public de prévention en santé et en sécurité du travail.

Assurer la diffusion des connaissances, jouer un rôle de référence scientifique et d'expert.

Doté d'un conseil d'administration paritaire où siègent en nombre égal des représentants des employeurs et des travailleurs, l'IRSST est financé par la Commission de la santé et de la sécurité du travail.

Pour en savoir plus

Visitez notre site Web ! Vous y trouverez une information complète et à jour. De plus, toutes les publications éditées par l'IRSST peuvent être téléchargées gratuitement. www.irsst.qc.ca

Pour connaître l'actualité de la recherche menée ou financée par l'IRSST, abonnez-vous gratuitement au magazine Prévention au travail, publié conjointement par l'Institut et la CSST. Abonnemet : 1-877-221-7046

Dépôt légal

Bibliothèque et Archives nationales 2008 ISBN : 978-2-89631-315-0 (version imprimée) ISBN : 978-2-89631-316-7 (PDF) ISSN : 0820-8395

IRSST - Direction des communications 505, boul. De Maisonneuve Ouest Montréal (Québec) H3A 3C2 Téléphone : 514 288-1551 Télécopieur : 514 288-7636 publications@irsst.qc.ca www.irsst.qc.ca Institut de recherche Robert-Sauvé en santé et en sécurité du travail, octobre 2008

Équipements de protection

Études et recherches

ANNEXE RA-582

Réduction de la distance de garde en tête des excavations étançonnées par un tuyau en tôle d'acier ondulé galvanisé (TTAOG)

Avis de non-responsabilité

L'IRSST ne donne aucune garantie relative à l'exactitude, la fiabilité ou le caractère exhaustif de l'information contenue dans ce document. En aucun cas l'IRSST ne saurait être tenu responsable pour tout dommage corporel, moral ou matériel résultant de l'utilisation de cette information.

Notez que les contenus des documents sont protégés par les législations canadiennes applicables en matière de propriété intellectuelle.

Cette publication est disponible en version PDF sur le site Web de l'IRSST. André Lan, Service de la recherche, IRSST Renaud Daigle, Service soutien à la recherche et à l'expertise, IRSST Denis LeBoeuf, Département de génie civil, Université Laval Omar Chaallal, Département de génie de la construction, ÉTS

CONFORMÉMENT AUX POLITIQUES DE L'IRSST

Les résultats des travaux de recherche publiés dans ce document ont fait l'objet d'une évaluation par des pairs.

TABLE DES MATIÈRES

Table des matières	i
liste des tableaux	iii
Liste des figures	v
ANNEXE A – RÉPONSES TYPIQUES DES ESSAIS DYNAMIQUES AU CHAI LE CAMION C10, le récureur r12, et le fwd	NTIER AVEC
ANNEXE B - MASSES VOLUMIQUES MESURÉES AU NUCLEODENSIMET des analyses des essais fwd	RE et résultats 37
ANNEXE C – RÉSULTATS de l'analyse inverse dynamique des essais fwd	53
ANNEXE D – historiques de contraintes radiales calculées avec dynapav-ul	73

i

LISTE DES TABLEAUX

Tableau 5.6 Valeurs des contraintes résiduelles, maximales et nettes – C10	29
Tableau 5.7 Valeurs nettes des différents essais – C10	30
Tableau 5.8 Valeurs des contraintes résiduelles, maximales et nettes – R12	31
Tableau 5.9 Valeurs nettes des différents essais – R12	32
Tableau 5.10 Valeurs des contraintes résiduelles, maximales et nettes – RC	33
Tableau 5.11 Valeurs nettes des différents essais – RC	34
Tableau 5.12 Valeurs des contraintes résiduelles, maximales et nettes – FWD	35
Tableau 5.13 Valeurs nettes des différents essais – FWD	36
Tableau B-1 : Données de déflexion des essais du FWD sur le remblai aux distances de 0.95, 2	2.0,
3.0 et 4.0 m	45
Tableau B-2 : Données de déflexion des essais du FWD sur le remblai à 2.5 m de distance	46
Tableau B-3 : Données de déflexion des essais du FWD sur le stationnement	48
Tableau 6.1 Résultats d'analyse inverse des essais FWD à 0.95 m de distance	49
Tableau 6.2 Résultats d'analyse inverse des essais FWD à 2.00 m de distance	49
Tableau 6.3 Résultats d'analyse inverse des essais FWD à 2.50 m de distance	50
Tableau 6.4 Résultats d'analyse inverse des essais FWD à 3.05 m de distance	50
Tableau 6.5 Résultats d'analyse inverse des essais FWD à 4.07 m de distance	51
Tableau 6.6 Résultats d'analyse inverse des essais FWD à 12.0 m de distance sur le	
stationnement	51

LISTE DES FIGURES

Figure 5.3 Réponses typiques – R12.4Figure 5.4 Réponses typiques – RC.5Figure 5.5 Réponses typiques – FWD.6Figure 5.6 Effet de la distance – C10 – sans dos d'âne.7Figure 5.7 Effet de la distance – R12 – sans dos d'âne.8Figure 5.8 Effet de la distance – C10 – avec dos d'âne.9Figure 5.9 Effet de la distance – R12 – avec dos d'âne.10Figure 5.10 Effet du dos d'âne – Essai C10-A0/1-V10-D0,2.11
Figure 5.4 Réponses typiques – RC.5Figure 5.5 Réponses typiques – FWD.6Figure 5.6 Effet de la distance – C10 – sans dos d'âne.7Figure 5.7 Effet de la distance – R12 – sans dos d'âne.8Figure 5.8 Effet de la distance – C10 – avec dos d'âne.9Figure 5.9 Effet de la distance – R12 – avec dos d'âne.10Figure 5.10 Effet du dos d'âne – Essai C10-A0/1-V10-D0,2.11
Figure 5.5 Réponses typiques – FWD.6Figure 5.6 Effet de la distance – C10 – sans dos d'âne.7Figure 5.7 Effet de la distance – R12 – sans dos d'âne.8Figure 5.8 Effet de la distance – C10 – avec dos d'âne.9Figure 5.9 Effet de la distance – R12 – avec dos d'âne.10Figure 5.10 Effet du dos d'âne – Essai C10-A0/1-V10-D0,2.11
Figure 5.6 Effet de la distance - C10 - sans dos d'âne7Figure 5.7 Effet de la distance - R12 - sans dos d'âne8Figure 5.8 Effet de la distance - C10 - avec dos d'âne9Figure 5.9 Effet de la distance - R12 - avec dos d'âne10Figure 5.10 Effet du dos d'âne - Essai C10-A0/1-V10-D0,211
Figure 5.7 Effet de la distance – R12 – sans dos d'âne8Figure 5.8 Effet de la distance – C10 – avec dos d'âne9Figure 5.9 Effet de la distance – R12 – avec dos d'âne10Figure 5.10 Effet du dos d'âne – Essai C10-A0/1-V10-D0,211
Figure 5.8 Effet de la distance - C10 - avec dos d'âne.9Figure 5.9 Effet de la distance - R12 - avec dos d'âne.10Figure 5.10 Effet du dos d'âne - Essai C10-A0/1-V10-D0,2.11
Figure 5.9 Effet de la distance – R12 – avec dos d'âne.10Figure 5.10 Effet du dos d'âne – Essai C10-A0/1-V10-D0,2.11
Figure 5.10 Effet du dos d'âne – Essai C10-A0/1-V10-D0,211
Figure 5.11 Effet du dos d'âne – Essai C10-A0/1-V10-D0,2
Figure 5.12 Effet du dos d'âne – Essai R12-A0/1-V10-D0,2
Figure 5.13 Effet du dos d'âne – Essai R12-A0/1-V10-D0,214
Figure 5.14 Effet de la vitesse – Essai C10-A0-V10/25-D0,215
Figure 5.15 Effet de la vitesse – Essai R12-A0-V10/25-D0,216
Figure 5.16 Effets combinés – Essai C10-A0/1-V10/25 – CPH17
Figure 5.17 Effets combinés – Essai C10-A0/1-V10/25 – LVDTs
Figure 5.18 Effets combinés – Essai R12-A0/1-V10/25 – CPH
Figure 5.19 Effets combinés – Essai R12-A0/1-V10/25 – LVDTs
Figure 5.20 Effet de la distance – Essai RC-V5-DO,2/1/2/3/4
Figure 5.21 (a) Résultats des essais FWD (P25/35/55)
Figure 5.21 (b) Résultats des essais FWD (P25/35/55) (suite)
Figure 5.22 Historique de réponse des capteurs de pression - Essai FWD-D0,95-P55-FWD (P55).
Figure 5.23 Historique de réponse des capteurs de pression - Essai FWD-D0,95-P25-FWD (P25).
Figure B-1 : Résultats des essais au nucléo-densimètre P-1 à P-4
Figure B-2 : Résultats des essais au nucléo-densimètre P-5 à P-840
Figure B-3 : Résultats des essais au nucléo-densimètre P-9 à P-1041
Figure 6.1 Définition des observations sur les historiques de déflexions mesurés
Figure 6.2 Schématisation du milieu multicouche
Figure 6.3 Influence du nombre de lancers de la masse tombante du FWD sur la déflexion selon
les trois niveaux de charge considérés, 25, 35 et 55 kN
Figure 6.4 Résultats d'analyse inverse des essais FWD à l'aide du programme DYNAPAV-UL à
2.50 m pour le niveau de charge de 25 kN
Figure C-1 : Résultat de l'analyse inverse dynamique de l'essai FWD à 0.95 m de distance pour
le niveau de charge de 25 kN
Figure C-2 : Résultat de l'analyse inverse dynamique de l'essai FWD à 0.95 m de distance pour
le niveau de charge de 35 kN
Figure C-3 : Résultat de l'analyse inverse dynamique de l'essai FWD à 0.95 m de distance pour
le niveau de charge de 55 kN
Figure C-4 : Résultat de l'analyse inverse dynamique de l'essai FWD à 2.00 m de distance pour
le niveau de charge de 25 kN
Figure C-5 : Résultat de l'analyse inverse dynamique de l'essai FWD à 2.00 m de distance pour
le niveau de charge de 35 kN

Figure C-6 : Mesures de déflexions de l'essai FWD à 2.00 m de distance pour le niveau de
charge de 55 kN
Figure C-7 : Résultat de l'analyse inverse dynamique de l'essai FWD à 2.50 m de distance pour
le niveau de charge de 25 kN
Figure C-8 : Résultat de l'analyse inverse dynamique de l'essai FWD à 2.50 m de distance pour
le niveau de charge de 35 kN62
Figure C-9 : Résultat de l'analyse inverse dynamique de l'essai FWD à 2.50 m de distance pour
le niveau de charge de 55 kN63
Figure C-10 : Résultat de l'analyse inverse dynamique de l'essai FWD à 3.05 m de distance pour
le niveau de charge de 25 kN64
Figure C-11 : Résultat de l'analyse inverse dynamique de l'essai FWD à 3.05 m de distance pour
le niveau de charge de 35 kN65
Figure C-12 : Mesures de déflexions de l'essai FWD à 3.05 m de distance pour le niveau de
charge de 55 kN
Figure C-13 : Résultat de l'analyse inverse dynamique de l'essai FWD à 4.07 m de distance pour
le niveau de charge de 25 kN
Figure C-14 : Résultat de l'analyse inverse dynamique de l'essai FWD à 4.07 m de distance pour
le niveau de charge de 35 kN
Figure C-15 : Mesures de déflexions de l'essai FWD à 4.07 m de distance pour le niveau de
charge de 55 kN 69
Figure C-16 · Résultat de l'analyse inverse dynamique de l'essai FWD à 12 0 m de distance sur
le stationnement pour le niveau de charge de 25 kN 70
Figure C-17 · Résultat de l'analyse inverse dynamique de l'essai FWD à 12.0 m de distance sur
le stationnement nour le niveau de charge de 35 kN 71
Figure C-18 : Résultat de l'analyse inverse dynamique de l'essai FWD à 120 m de distance sur
le stationnement pour le niveau de charge de 55 kN
Figure 7.1 Déplacements théoriques horizontaux prédits par DVNAPAV III, pour les essais
offortués à 0.05 m de la parei de l'étanconnement
Effectues a 0.95 fil de la paroi de l'etaliçonnement
offactués à 2.00 m de la parei de l'étanconnement
Figure 7.2 Déplacements théoriques herizonteux prédits per DVNADAV III, pour les esseis
offortués à 2.50 m de la parei de l'étanconnement
Effectues a 2.50 fil de la paroi de l'etançointement
Figure 7.4 Depiacements theoriques norizontaux predits par DYNAPAV-OL pour les essais
effectues a 3.05 m de la paroi de l'etançonnement
Figure 7.5 Deplacements theoriques norizontaux predits par DYNAPAV-UL pour les essais
effectues a 4.0/ m de la paroi de l'etançonnement
Figure 7.6 Contraintes radiales predites par DYNAPAV-UL pour les essais effectués à 0.95 m de
la paroi de l'étançonnement
Figure 7.7 Contraintes radiales prédites par DYNAPAV-UL pour les essais effectués à 2.00 m de
la paroi de l'étançonnement
Figure 7.8 Contraintes radiales prédites par DYNAPAV-UL pour les essais effectués à 2.50 m de
la paroi de l'étançonnement
Figure 7.9 Contraintes radiales prédites par DYNAPAV-UL pour les essais effectués à 3.05 m de
la paroi de l'étançonnement
Figure 7.10 Contraintes radiales prédites par DYNAPAV-UL pour les essais effectués à 4.07 m
de la paroi de l'étançonnement

ANNEXE A – RÉPONSES TYPIQUES DES ESSAIS DYNAMIQUES AU CHANTIER AVEC LE CAMION C10, LE RÉCUREUR R12, ET LE FWD

(b): Essai C10-A1-V10-D0,2 – CPH 2 / LVDT 2⊥

(d): Essai C10-A0-V25-D0,2 – CPH 2 / LVDT 2⊥

Figure 5.2 Réponses typiques – C10.

(a): Essai R12-A1-V10-D0,2 - CPH 1 / LVDT 11

(c): Essai R12-A0-V25-D0,2 - CPH 1 / LVDT 11

(b): Essai R12-A1-V10-D0,2 – CPH 2 / LVDT 2⊥

(d): Essai R12-A0-V25-D0,2 – CPH 2 / LVDT 2⊥

Figure 5.3 Réponses typiques – R12.

(a): Essai RC-A0-V5-D0,2 - CPH 1 / LVDT 11

(c): Essai RC-A0-V5-D1 - CPH 1 / LVDT 1 \perp

(b): Essai RC-A0-V5-D0,2 - CPH 2 / LVDT 2⊥

(d): Essai RC-A0-V5-D1 - CPH 2 / LVDT 2 \perp

Figure 5.4 Réponses typiques – RC.

(a): Essai FWD-D0,95-P55 - CPH 1 / LVDT 1

(c): Essai FWD-D2-P55 - CPH 1 / LVDT 1⊥

(d): Essai FWD-D2-P55 - CPH 2 / LVDT 2⊥

Figure 5.5 Réponses typiques – FWD.

Figure 5.6 Effet de la distance - C10 - sans dos d'âne.

7

Figure 5.7 Effet de la distance – R12 – sans dos d'âne.

Figure 5.8 Effet de la distance – C10 – avec dos d'âne.

Figure 5.9 Effet de la distance – R12 – avec dos d'âne.

Figure 5.10 Effet du dos d'âne – Essai C10-A0/1-V10-D0,2.

Figure 5.11 Effet du dos d'âne – Essai C10-A0/1-V10-D0,2.

Figure 5.12 Effet du dos d'âne – Essai R12-A0/1-V10-D0,2.

Figure 5.13 Effet du dos d'âne – Essai R12-A0/1-V10-D0,2.

Figure 5.14 Effet de la vitesse – Essai C10-A0-V10/25-D0,2.

Figure 5.15 Effet de la vitesse – Essai R12-A0-V10/25-D0,2.

Figure 5.16 Effets combinés – Essai C10-A0/1-V10/25 – CPH.

Figure 5.16 Effets combinés – Essai C10-A0/1-V10/25 – CPH (suite).

Figure 5.17 Effets combinés – Essai C10-A0/1-V10/25 – LVDTs.

Figure 5.17 Effets combinés – Essai C10-A0/1-V10/25 - LVDTs (suite).

Figure 5.18 Effets combinés – Essai R12-A0/1-V10/25 – CPH.

CPH4

22 Réduction de la distance de garde en tête des excavations étançonnées par un tuyau de tôle en - IRSST acier ondulé galvanisé (TTAOG) – Annexes au rapport de recherche

Figure 5.19 Effets combinés – Essai R12-A0/1-V10/25 – LVDTs.

Figure 5.20 Effet de la distance – Essai RC-V5-DO,2/1/2/3/4.

Figure 5.21 (a) Résultats des essais FWD (P25/35/55).

55

Figure 5.21 (b) Résultats des essais FWD (P25/35/55) (suite).

Figure 5.22 Historique de réponse des capteurs de pression - Essai FWD-D0,95-P55-FWD (P55).

Figure 5.23 Historique de réponse des capteurs de pression - Essai FWD-D0,95-P25-FWD (P25).

Tableau 5.6 Valeurs des contraintes résiduelles, maximales et nettes – C10

						CPH 1			CPH 2			CPH 3			CPH 4	
					р	rofonde	ur	р	rofonde	ır	р	rofonder	ır		Profonde	ur
						613 mm	l	-	1561 mn	1		2035 mn	1		2512 mr	n
Dos d'âne	Vitesse	Dista	nce	Désignation de l'essai	$P_o^{\left(b\right)}$	σ_{max}	Δσ	Po	σ_{max}	Δσ	Po	σ_{max}	Δσ	Po	σ_{max}	Δσ
Oui / Non	Km/m	m			kPa	kPa	kPa	kPa	kPa	kPa	kPa	kPa	kPa	kPa	KPa	KPa
Oui	10	0,2		C10-A1-V10-D0,2	32,0	53,2	21,2	37,9	41,4	3,5	54,1	57,0	2,9	61,3	62,3	1,0
		1		C10-A1-V10-D1	31,1	38,1	7,0	38,5	41,1	2,6	54,3	56,1	1,8	61,5	62,2	0,7
		2		C10-A1-V10-D2	39,2	42,2	3,0	36,2	38,8	2,6	52,2	54,4	2,2	61,0	61,7	0,7
		3		C10-A1-V10-D3	39,0	41,1	2,1	36,5	37,1	0,6	52,5	53,0	0,5	61,3	61,4	0,1
		4		C10-A1-V10-D4	38,6	39,7	1,1	36,8	37,0	0,2	52,9	53,1	0,2	61,7	61,7	0,0
	25	2		C10-A1-V25-D2	38,1	42,0	3,9	36,9	39,3	2,4	53,1	54,9	1,8	61,4	61,9	0,5
		3		C10-A1-V25-D3	39,4	41,8	2,4	36,2	37,2	1,0	52,2	53,1	0,9	61,1	61,3	0,2
N	0	4	(C10-A1-V25-D4	38,8	40,3	1,5	36,6	37,1	0,5	52,6	53,1	0,5	61,5	61,5	0,0
Non	0	2	(essieu 1)	$C10-A0-V0-D2-E1^{(a)}$	34,2	36,2	2,0	36,6	30,0	0,0	52,3	52,4	0,1	61,4	60,8	-0,6
		2	(essien 2)	C10-A0-V0-D2-E2	24,2	37,7	3,5	26.6	37,4 27.6	1.0	52,5 52,2	53,2	1.0	61.4	60.2	-1,5
	10	$^{2}_{02}$	(costeu 5)	C10-A0-V10-D0 2	30.3	36.3	5,0 6.0	38.4	41.6	3.2	52,5 55 7	55,5 57.8	2.1	63.2	63.4	-1,2
	10	1		C10-A0-V10-D1	33.8	38.1	43	37.6	41.5	3.9	55.4	58.0	2,1	64 5	64.9	0.4
		2		C10-A0-V10-D2	33.7	36.2	2.5	37.5	39.5	2.0	55.3	56.6	1.3	64.5	64.7	0.2
		3		C10-A0-V10-D3	33.0	35.2	2.2	37.6	38.5	0.9	55.5	56.0	0.5	64.8	64.9	0.1
		4		C10-A0-V10-D4	33,0	33,9	0,9	37,6	38,0	0,4	55,6	55,9	0,3	64,8	64,9	0,1
	25	0,2		C10-A0-V25-D0,2	29,1	40,0	10,9	38,0	42,3	4,3	55,5	58,5	3,0	62,9	63,5	0,6
		1		C10-A0-V25-D1	31,3	36,6	5,3	38,5	41,7	3,2	56,5	58,5	2,0	64,5	65,0	0,5
		2		C10-A0-V25-D2	33,5	36,4	2,9	37,6	39,4	1,8	55,5	56,5	1,0	64,6	64,8	0,2
		3		C10-A0-V25-D3	33,4	35,9	2,5	37,4	38,7	1,3	55,3	56,0	0,7	64,6	64,7	0,1
					Empla	cement	СРН									
				1	-		\geq		<u> </u>							
					<		`>+-		. ДШД	\$0L						
						1		-								
					5											
							CF.	H 1	8							
									20							
				3650						cu						
							CP	HZ								
					<			H3	+							
					·		CP	14								
					-		2									

Note :

- (a) : La contrainte résiduelle est supposée la même pour les trois essais statiques (C10-A0-V0-D2-E1, C10-A0-V0-D2-E2 et C10-A0-V0-D2-E3) et égale à la contrainte résiduelle de l'essai précédent à C10-A0-V0-D2-E1.
- (b) $P_o = \text{contrainte horizontale résiduelle}; \sigma_{max} : \text{contrainte horizontale maximum}; \Delta \sigma : \text{contrainte nette ou surcharge dynamique}$

Tableau 5.7 Valeurs nettes des différents essais – C10

					Co	ontrainte net de pression	te des capte horizontale	eurs		Déplacem	ent net de	es LVDTs	
					CPH 1	CPH 2	CPH 3	CPH 4	1⊥	2⊥	2//	3⊥	3//
					Prof. 613 mm	Prof. 1561 mm	Prof. 2035 mm	Prof. 2512 mm	Prof. 606 mm	Pr 1549	of. 9 mm	Pro 2490	of. mm
Dos d'âne	Vitesse	Γ	Distance	Désignation de l'essai	Δσ	Δσ	Δσ	Δσ	ΔL	Δ	L	Δ	L
Oui / Non	Km/m		m		kPa	kPa	kPa	kPa	mm	m	m	m	m
Oui	10	0,2		C10-A1-V10-D0,2	<u>21,2</u>	3,5	2,9	1,0	<u>-0,94</u>	-0,09	0,00	0,00	0,01
		1		C10-A1-V10-D1	7,0	2,6	1,8	0,7	-0,03	-0,04	-0,01	-0,01	0,01
		2		C10-A1-V10-D2	3,0	2,6	2,2	0,7	-0,03	-0,03	0,00	0,00	0,00
		3		C10-A1-V10-D3	2,1	0,6	0,5	0,1	-0,01	-0,03	0,00	-0,01	0,00
		4		C10-A1-V10-D4	1,1	0,2	0,2	0,0	-0,01	-0,03	0,00	-0,01	0,00
	25	2		C10-A1-V25-D2	3,9	2,4	1,8	0,5	-0,03	-0,04	0,00	0,00	0,01
		3		C10-A1-V25-D3	2,4	1,0	0,9	0,2	-0,01	-0,04	0,00	-0,01	0,00
		4		C10-A1-V25-D4	1,5	0,5	0,5	0,0	0,00	-0,04	0,01	-0,01	0,00
Non	0	2	(essieu 1)	C10-A0-V0-D2-E1 ^(a)	2,0	0,0	0,1	-0,6	0,01	0,03	0,01	0,00	-0,01
		2	(essieu 2)	C10-A0-V0-D2-E2 ^(a)	3,5	0,8	0,9	-1,3	-0,01	-0,04	0,02	-0,01	-0,01
		2	(essieu 3)	C10-A0-V0-D2-E3 ^(a)	3,8	1,0	1,0	-1,2	0,04	-0,04	0,01	0,00	0,01
	10	0,2		C10-A0-V10-D0,2	6,0	3,2	2,1	0,2	-0,09	-0,10	0,00	0,00	0,00
		1		C10-A0-V10-D1	4,3	3,9	2,6	0,4	-0,03	-0,06	0,00	0,00	0,01
		2		C10-A0-V10-D2	2,5	2,0	1,3	0,2	-0,03	-0,04	0,00	-0,01	0,01
		3		C10-A0-V10-D3	2,2	0,9	0,5	0,1	-0,03	-0,04	0,00	-0,01	0,01
		4		C10-A0-V10-D4	0,9	0,4	0,3	0,1	-0,03	-0,03	0,00	0,00	0,00
	25	0,2		C10-A0-V25-D0,2	10,9	4,3	3,0	0,6	-0,59	-0,25	0,05	-0,01	0,00
		1		C10-A0-V25-D1	5,3	3,2	2,0	0,5	-0,03	-0,04	0,01	0,00	0,00
		2		C10-A0-V25-D2	2,9	1,8	1,0	0,2	-0,03	-0,04	0,00	-0,01	0,01
		3		C10-A0-V25-D3	2,5	1,3	0,7	0,1	-0,03	-0,03	0,00	-0,01	0,01
			Employee	ant I. VIVIa			Emplac	ement CPH	ŧ	Ĺ			
			Linplacent			Ŧ				1			
				LVOTIL SI	505		C	>	СРИ1	2000 2000 2000	50L		
		9690				999	VVV		СРН2 СРН3 СРН4				
		1				1							

Note :

(a) : La contrainte résiduelle est supposée la même pour les trois essais statiques (C10-A0-V0-D2-E1, C10-A0-V0-D2-E2) et égale à la contrainte résiduelle de l'essai précédent à C10-A0-V0-D2-E1.

						CPH 1			CPH 2			CPH 3			CPH 4	
					Р	rofondeu	r	Р	rofonde	ır	Р	rofondeu	ır	F	rofondeu	ır
						613 mm			1561 mn	ı	1	2035 mn	ı		2512 mm	ı
Dos d'âne	Vitesse	Dista	ince	Désignation de l'essai	$P_{o}^{\left(b\right) }$	σ_{max}	Δσ	Po	σ_{max}	Δσ	Po	σ_{max}	Δσ	Po	σ_{max}	Δσ
Oui / Non	Km/m	m			kPa	kPa	kPa	kPa	kPa	kPa	kPa	kPa	kPa	KPa	KPa	kPa
Oui	10	0,2		R12-A1-V10-D0,2	37,6	46,6	9,0	35,6	38,0	2,4	52,7	54,2	1,5	61,1	61,4	0,3
		1		R12-A1-V10-D1	34,3	44,2	9,9	36,3	39,5	3,2	53,3	55,6	2,3	61,2	61,4	0,2
Non	0	0,2	(essieu 2)	R12-A0-V0-D0,2-E2 ^(a)	33,6	33,1	-0,5	36,8	30,5	-6,3	53,9	50,0	-3,9	61,0	58,5	-2,5
		0,2	(essieu 3)	R12-A0-V0-D0,2-E3 ^(a)	33,6	25,6	-0,8	36,8	31,3	-5,5	53,9	50,1	-3,8	61,0	58,1	-2,9
		0,2	(essieu 4)	R12-A0-V0-D0,2-E4 ^(a)	33,6	24,1	-9,5	36,8	31,9	-4,9	53,9	50,3	-3,6	61,0	58,3	-2,7
		1	(essieu 2)	R12-A0-V0-D1-E2 ^(a)	33,6	39,2	5,6	36,8	35,9	-0,9	53,9	52,5	-1,4	61,0	59,3	-1,7
		1	(essieu 3)	R12-A0-V0-D1-E3 ^(a)	33,6	38,6	5,0	36,8	36,7	-0,1	53,9	53,1	-0,8	61,0	59,2	-1,8
		1	(essieu 4)	R12-A0-V0-D1-E4 ^(a)	33,6	38,7	5,1	36,8	36,6	-0,2	53,9	52,9	-1,0	61,0	59,3	-1,7
	10	0,2		R12-A0-V10-D0,2	34,0	42,1	8,1	36,4	38,6	2,2	53,6	54,9	1,3	61,0	61,3	0,3
		1		R12-A0-V10-D1	35,2	37,5	2,3	37,0	38,0	1,0	53,6	54,8	1,2	60,9	61,2	0,3
	25	0,2		R12-A0-V25-D0,2	35,5	41,6	6,1	36,7	39,1	2,4	53,5	55,0	1,5	60,9	61,4	0,5
		1		R12-A0-V25-D1	33,3	36,4	3,1	36,5	38,5	2,0	53,5	55,1	1,6	60,9	61,2	0,3

Note :

(a) : La contrainte résiduelle est supposée la même pour les six essais statiques (R12-A0-V0-D0,2-E2, R12-A0-V0-D0,2-E3, R12-A0-V0-D0,2-E4, R12-A0-V0-D1-E2, R12-A0-V0-D1-E3 et R12-A0-V0-D1-E4) et égale à la contrainte résiduelle de l'essai précédent à R12-A0-V0-D0,2-E2.

(b) P_o = contrainte horizontale résiduelle; σ_{max} : contrainte horizontale maximum; $\Delta \sigma$: contrainte nette ou surcharge dynamique

Tableau 5.9 Valeurs nettes des différents essais – R12

					Co	ntrainte net	te des capte	eurs		D/ I	1	LUDT	
						de pression	horizontal	e		Déplacem	ent net de	es LVDTs	
					CPH 1	CPH 2	CPH 3	CPH 4	1⊥	2⊥	2//	3⊥	3//
					Prof. 613 mm	Prof. 1561 mm	Prof. 2035 mm	Prof. 2512 mm	Prof. 606 mm	Pro 1549	of. 9 mm	Pr 2490	of.) mm
Dos d'âne	Vitesse	Dista	ince	Désignation de l'essai	Δσ	Δσ	Δσ	Δσ	ΔL	Δ	.L	Δ	.L
Oui / Non	Km/m	m			kPa	kPa	kPa	kPa	mm	m	m	m	m
Oui	10	0,2		R12-A1-V10-D0,2	9,0	2,4	1,5	0,3	-0,10	-0,04	0,01	0,01	0,01
		1		R12-A1-V10-D1	9,9	3,2	2,3	0,2	-0,04	-0,04	0,01	0,00	0,00
Non	0	0,2	(essieu 2)	R12-A0-V0-D0,2-E2 ^(a)	-0,5	-6,3	-3,9	-2,5	-0,03	0,00	0,00	0,00	-0,01
		0,2	(essieu 3)	R12-A0-V0-D0,2-E3 ^(a)	-0,8	-5,5	-3,8	-2,9	-0,04	0,00	0,00	0,00	-0,01
		0,2	(essieu 4)	R12-A0-V0-D0,2-E4 ^(a)	-9,5	-4,9	-3,6	-2,7	-0,04	-0,02	0,00	0,00	-0,01
		1	(essieu 2)	R12-A0-V0-D1-E2 ^(a)	5,6	-0,9	-1,4	-1,7	-0,02	0,00	0,00	0,00	-0,01
		1	(essieu 3)	R12-A0-V0-D1-E3 ^(a)	5,0	-0,1	-0,8	-1,8	-0,03	-0,02	0,00	0,00	-0,01
		1	(essieu 4)	R12-A0-V0-D1-E4 ^(a)	5,1	-0,2	-1,0	-1,7	-0,03	-0,02	0,00	0,00	-0,01
	10	0,2		R12-A0-V10-D0,2	8,1	2,2	1,3	0,3	-0,03	-0,04	0,01	0,00	0,01
		1		R12-A0-V10-D1	2,3	1,0	1,2	0,3	-0,03	-0,03	0,00	0,00	0,01
	25	0,2		R12-A0-V25-D0,2	6,1	2,4	1,5	0,5	-0,03	-0,04	0,00	-0,01	0,00
		1		R12-A0-V25-D1	3,1	2,0	1,6	0,3	-0,03	-0,04	0,00	0,00	0,01
		Emp	lacement L'	VDTs			Em	placement	t CPH	(<u> </u>		
	0296	<u>* * * * * </u>	LVDT2//	LVDT 1L LVDT 2L	POL.	1046				H1 42	5153 +	505.	

Note :

(a) : La contrainte résiduelle est supposée la même pour les six essais statiques (R12-A0-V0-D0,2-E2, R12-A0-V0-D0,2-E3, R12-A0-V0-D0,2-E4, R12-A0-V0-D1-E2, R12-A0-V0-D1-E3 et R12-A0-V0-D1-E4) et égale à la contrainte résiduelle de l'essai précédent à R12-A0-V0-D0,2-E2.

Tableau 5.10 Valeurs des contraintes résiduelles, maximales et nettes - RC

						CPH 1			CPH 2			CPH 3			CPH 4	
					Р	rofonde	ur]	Profonde	ur	Р	rofondeu	ır		Profonde	ur
						613 mm	L		1561 mr	n	:	2035 mn	1		2512 mr	n
Dos	Vitagaa	Dista		Désignation	D (c)	a	٨σ	р	a	۸a	р	a	٨σ	р	a	٨σ
d'âne	vitesse	Dista	lince	de l'essai	P ₀	U _{max}	Δ0	P ₀	O _{max}	Δ0	P ₀	O _{max}	Δ0	P ₀	O _{max}	Δ0
Oui / Non	Km/m	m			kPa	kPa	kPa	kPa	kPa	kPa	kPa	kPa	kPa	kPa	kPa	KPa
Non	0	0,2	(essieu 1)	RC-V0-D0,2-E1 ^(b)	31,5	34,4	2,9	37,0	37,8	0,8	54,1	54,5	0,4	64,0	63,7	-0,3
		1	(essieu 1)	RC-V0-D1-E1	29,6	32,3	2,7	35,7	36,3	0,6	53,6	54,0	0,4	63,8	63,9	0,1
		2	(essieu 1)	RC-V0-D2-E1	29,4	30,8	1,4	34,6	34,9	0,3	52,1	52,4	0,3	61,1	61,2	0,1
		3	(essieu 1)	RC-V0-D3-E1	30,2	30,4	0,2	34,3	34,6	0,3	51,7	52,0	0,3	60,1	60,4	0,3
		4	(essieu 1)	RC-V0-D4-E1	32,5	31,5	1,0	36,2	34,0	-2,2	53,5	51,4	-2,1	61,0	59,6	-1,4
	$< 5^{(a)}$	0,2		RC-V5-D0,2	33,1	42,8	9,7	35,3	41,2	5,9	53,0	57,7	4,7	62,8	67,2	4,4
		1		RC-V5-D1	30,6	38,4	7,8	35,2	42,5	7,3	53,0	59,2	6,2	63,0	69,0	6,0
		2		RC-V5-D2	30,3	34,4	4,1	34,3	39,6	5,3	51,9	57,5	5,6	60,8	66,2	5,4
		3		RC-V5-D3	30,1	33,4	3,3	34,3	36,6	2,3	51,7	54,0	2,3	60,2	62,3	2,1
		4		RC-V5-D4	31,3	33,5	2,2	33,9	35,3	1,4	51,3	52,8	1,5	59,5	61,4	1,9

Note :

- (a) : La vitesse n'a pu être captée par le radar à vitesse car elle était trop faible (< 5 km / h)
- (b) : La contrainte résiduelle des essais statiques RC-V0-D0,2-E1, RC-V0-D1-E1, RC-V0-D2-E1, RC-V0-D3-E1, RC-V0-D4-E1 est supposée égale à la contrainte résiduelle de l'essai précédent.
- (c) $P_o = \text{contrainte horizontale résiduelle}; \sigma_{max}$: contrainte horizontale maximum; $\Delta \sigma$: contrainte nette ou surcharge dynamique

Tableau 5.11 Valeurs nettes des différents essais - RC

				Co	ntrainte net	te des capte	urs		Dánlacom	ont not do		
					de pression	horizontale	;		Deplacem	ient net de	SLVDIS	
				CPH 1	CPH 2	CPH 3	CPH 4	1⊥	2⊥	2//	3⊥	3//
				Prof. 613 mm	Prof. 1561 mm	Prof. 2035 mm	Prof. 2512 mm	Prof. 606 mm	Pr 1549	of. 9 mm	Pr 2490	of. mm
Vitesse	Dista	ance	Désignation de l'essai	$\Delta \sigma^{(c)}$	Δσ	Δσ	Δσ	ΔL	Δ	L	Δ	L
Km/m	М			kPa	kPa	kPa	Кра	mm	m	m	m	m
0	0,2	(essieu 1)	RC-V0-D0,2-E1	2,9	0,8	0,4	-0,3	-0,08	-0,01	0,00	0,00	0,00
	1	(essieu 1)	RC-V0-D1-E1	2,7	0,6	0,4	0,1	-0,01	-0,01	-0,01	0,00	0,01
	2	(essieu 1)	RC-V0-D2-E1	1,4	0,3	0,3	0,1	-0,83	-0,18	-0,23	-0,28	0,01
	3	(essieu 1)	RC-V0-D3-E1	0,2	0,3	0,3	0,3	-0,01	-0,01	-0,03	-0,01	0,01
	4	(essieu 1)	RC-V0-D4-E1	1,0	-2,2	-2,1	-1,4	-0,01	-0,02	0,03	-0,01	0,01
$< 5^{(a)}$	0,2		RC-V5-D0,2	9,7	5,9	4,7	4,4	-0,26	-0,44	0,01	-0,10	0,00
	1		RC-V5-D1	7,8	7,3	6,2	6,0	-0,03	-0,04	0,00	-0,01	0,01
	2		RC-V5-D2	4,1	5,3	5,6	5,4	-0,01	-0,06	0,00	0,00	0,01
	3		RC-V5-D3	3,3	2,3	2,3	2,1	-0,01	-0,01	0,01	0,00	0,01
	4		RC-V5-D4	2,2	1,4	1,5	1,9	-0,01	-0,01	0,02	-0,01	0,00
	1	Emplacement L	VDTs	SOL	900	Empla		н срні срні срня	1941 1941 2000) 		
	Vitesse Km/m 0 < 5 ^(a)	Vitesse Dista Km/m M 0 0,2 1 2 3 4 < 5 ^(a) 0,2 1 2 3 4 1	Vitesse Distance Km/m M 0 0,2 (essieu 1) 1 (essieu 1) 2 (essieu 1) 3 (essieu 1) 4 (essieu 1) < 5 ^(a) 0,2 1 2 3 4 Emplacement L	Vitesse Distance Désignation de l'essai Km/m M RC-V0-D0,2-E1 1 (essieu 1) RC-V0-D1-E1 2 (essieu 1) RC-V0-D2-E1 3 (essieu 1) RC-V0-D3-E1 4 (essieu 1) RC-V0-D4-E1 < 5 (a)	CPH 1 Prof. 613 mm Vitesse Distance Désignation de l'essai Δσ ^(e) Km/m M kPa 0 0,2 (essieu 1) RC-V0-D0,2-E1 2,9 1 (essieu 1) RC-V0-D1-E1 2,7 2 2 (essieu 1) RC-V0-D2-E1 1,4 3 3 (essieu 1) RC-V0-D3-E1 0,2 4 4 (essieu 1) RC-V0-D4-E1 1,0 < 5 ^(a) 0,2 RC-V5-D2 9,7 1 RC-V5-D1 7,8 2 2 RC-V5-D2 4,1 3 3 RC-V5-D3 3,3 4 RC-V5-D4 2,2	de pression CPH 1 CPH 2 Prof. 613 1561 mm mm mm mm Vitesse Distance Désignation de l'essai Δσ ^(c) Δσ 0 0.2 (essieu 1) RC-V0-D0,2-E1 2,9 0,8 1 (essieu 1) RC-V0-D1-E1 2,7 0,6 2 (essieu 1) RC-V0-D2-E1 1,4 0,3 3 (essieu 1) RC-V0-D3-E1 0,2 0,3 4 (essieu 1) RC-V0-D4-E1 1,0 -2,2 < 5 ^(a) 0,2 RC-V5-D0,2 9,7 5,9 1 RC-V5-D1 7,8 7,3 2 RC-V5-D2 4,1 5,3 3 RC-V5-D3 3,3 2,3 4 RC-V5-D4 2,2 1,4	de pression horizontale CPH 1 CPH 2 CPH 3 Prof. Prof. Prof. Prof. Prof. Prof. Prof. 0 0,2 (essieu 1) RC-V0-D0,2-E1 2,9 0,8 0,4 1 (essieu 1) RC-V0-D1-E1 2,7 0,6 0,4 2 (essieu 1) RC-V0-D2-E1 1,4 0,3 0,3 3 (essieu 1) RC-V0-D3-E1 0,2 0,3 0,3 4 (essieu 1) RC-V0-D3-E1 1,0 -2,2 -2,1 < 5 ^(a) 0,2 RC-V5-D1 7,8 7,3 6,2 2 RC-V5-D2 4,1 5,3 5,6 3 RC-V5-D3 3,3 2,3 2,3 4 RC-V5-D4 2,2 1,4 1,5	de pression horizontale CPH 1 CPH 2 CPH 3 CPH 4 Prof. Quarter Market	cPH 1 CPH 2 CPH 3 CPH 4 1 Prof.	cPH 1 CPH 2 CPH 3 CPH 4 11 21 Prof. Prof.<	de pression horizontale CPH 1 CPH 3 CPH 4 1 21/ Prof. Quarter N	CPH 1 CPH 2 CPH 4 1.1 2.1 2/7 3.1 CPH 1 CPH 2 CPH 4 1.1 2.1 2/7 3.1 Vitesse Distance Designation de Lessian Δα ⁶⁰ Δα Δ

Note :

- (a) : La vitesse n'a pu être captée par le radar à vitesse car elle était trop faible (< 5 km / h)
- (b) : La contrainte résiduelle des essais statiques RC-V0-D0,2-E1, RC-V0-D1-E1, RC-V0-D2-E1, RC-V0-D3-E1, RC-V0-D4-E1 est supposée égale à la contrainte résiduelle de l'essai précédent.

Tableau 5.12 Valeurs des contraintes résiduelles, maximales et nettes – FWD

				CPH 1			CPH 2			CPH 3			CPH 4	
			I	Profonder	ur		Profonde	eur	1	Profonde	ur		Profonde	eur
				613 mm			1561 mr	n		2035 mr	n		2512 m	m
Distance	Poids	Désignation de l'essai	$P_{o}^{(a)}$	σ_{max}	Δσ	Po	σ_{max}	Δσ	Po	σ_{max}	Δσ	Po	σ_{max}	Δσ
m	KN		kPa	KPa	kPa	kPa	kPa	KPa	kPa	kPa	kPa	kPa	kPa	KPa
0,95	25	FWD-D0,95-P25	30,5	35,6	5,1	28,6	30,3	1,7	46,5	48,9	2,4	49,7	52,0	2,3
	35	FWD-D0,95-P35	30,6	37,2	6,6	28,5	30,7	2,2	46,3	49,4	3,1	49,6	52,9	3,3
	55	FWD-D0,95-P55	30,5	42,2	11,7	28,6	31,9	3,3	45,8	50,4	4,6	49,3	54,4	5,1
2	25	FWD-D2-P25	28,8	30,8	2,0	28,9	30,1	1,2	46,3	47,6	1,3	50,0	51,8	1,8
	35	FWD-D2-P35	28,8	30,6	1,8	28,8	30,1	1,3	46,2	48,0	1,8	49,9	51,9	2,0
	55	FWD-D2-P55	28,7	31,9	3,2	28,9	30,6	1,7	46,2	48,3	2,1	49,9	52,7	2,8
2,5	25	FWD-D2,5-P25	29,2	30,4	1,2	28,9	29,8	0,9	46,3	47,3	1,0	49,7	51,2	1,5
	35	FWD-D2,5-P35	29,2	30,8	1,6	28,8	29,9	1,1	46,3	47,3	1,0	49,7	51,3	1,6
	55	FWD-D2,5-P55	29,2	31,9	2,7	28,8	30,5	1,7	46,2	48,0	1,8	49,6	52,0	2,4
3	25	FWD-D3-P25	28,7	30,0	1,3	28,7	29,6	0,9	46,2	47,3	1,1	49,9	51,3	1,4
	35	FWD-D3-P35	28,7	30,2	1,5	28,7	29,7	1,0	46,2	47,4	1,2	49,9	51,3	1,4
	55	FWD-D3-P55	28,7	31,0	2,3	28,7	29,9	1,2	46,2	47,6	1,4	49,9	51,9	2,0
4	25	FWD-D4-P25	28,9	30,1	1,2	28,6	29,3	0,7	46,1	47,2	1,1	49,9	51,0	1,1
	35	FWD-D4-P35	28,9	30,2	1,3	28,6	29,5	0,9	46,1	47,4	1,3	49,8	51,1	1,3
	55	FWD-D4-P55	28,9	30,8	1,9	28,7	29,7	1,0	46,1	47,3	1,2	49,8	51,5	1,7

a) P_o = contrainte horizontale résiduelle; σ_{max} : contrainte horizontale maximum; $\Delta \sigma$: contrainte nette ou surcharge dynamique

Tableau 5.13 Valeurs nettes des différents essais - FWD

				Contrain	nte nette			Dép	lacement	net	
			Cap	teurs de pres	ssion horizo	ontale			LVDTs		
			CPH 1	CPH 2	CPH 3	CPH 4	1⊥	2⊥	2//	3⊥	3//
			Prof.	Prof.	Prof.	Prof.	Prof.	Pro	of.	Pro	of.
			613 mm	1561 mm	2035 mm	2512 mm	606 mm	1549	mm	2490	mm
Distance	Poids	Désignation de l'essai	Δσ	Δσ	Δσ	Δσ	ΔL	Δ	L	Δ	L
m	kN		kPa	kPa	kPa	kPa	mm	m	m	m	m
0,95	25	FWD-D0,95-P25	5,1	1,7	2,4	2,3	-0,01	-0,04	0,02	-0,02	0,01
	35	FWD-D0,95-P35	6,6	2,2	3,1	3,3	-0,02	-0,05	0,02	-0,02	0,01
	55	FWD-D0,95-P55	11,7	3,3	4,6	5,1	-0,15	-0,16	0,02	-0,02	0,01
2	25	FWD-D2-P25	2,0	1,2	1,3	1,8	-0,03	-0,05	0,02	-0,02	0,01
	35	FWD-D2-P35	1,8	1,3	1,8	2,0	-0,02	-0,05	0,02	-0,02	0,01
	55	FWD-D2-P55	3,2	1,7	2,1	2,8	-0,02	-0,06	0,02	-0,02	0,02
2,5	25	FWD-D2,5-P25	1,2	0,9	1,0	1,5	-0,01	-0,05	0,02	-0,01	0,01
	35	FWD-D2,5-P35	1,6	1,1	1,0	1,6	-0,01	-0,06	0,02	-0,01	0,01
	55	FWD-D2,5-P55	2,7	1,7	1,8	2,4	-0,01	-0,04	0,02	-0,01	0,02
3	25	FWD-D3-P25	1,3	0,9	1,1	1,4	-0,03	-0,06	0,02	-0,02	0,03
	35	FWD-D3-P35	1,5	1,0	1,2	1,4	-0,02	-0,04	0,01	-0,02	0,02
	55	FWD-D3-P55	2,3	1,2	1,4	2,0	-0,02	-0,05	0,01	-0,02	0,02
4	25	FWD-D4-P25	1,2	0,7	1,1	1,1	-0,01	-0,05	0,03	-0,02	0,02
	35	FWD-D4-P35	1,3	0,9	1,3	1,3	-0,02	-0,05	0,01	-0,01	0,02
	55	FWD-D4-P55	1,9	1,0	1,2	1,7	-0,01	-0,04	0,02	-0,01	0,01

ANNEXE B - MASSES VOLUMIQUES MESURÉES AU NUCLEODENSIMETRE ET RÉSULTATS DES ANALYSES DES ESSAIS FWD

	P-1	P-2	P-3	P-4
Densité humide (kg/m3):	2247	2198	2196	2206
Densité sèche (kg/m3):	2134	2104	2113	2115
Teneur en eau (%):	2,3	4,5	4,0	4,3

Figure B-1 : Résultats des essais au nucléo-densimètre P-1 à P-4

	P-5	P-6	P-7	P-8
Densité humide (kg/m ³):	2093	1971	2087	2103
Densité sèche (kg/m ³):	1896	1821	1919	1950
Teneur en eau (%):	10,4	8,2	8,8	7,9

Figure B-2 : Résultats des essais au nucléo-densimètre P-5 à P-8

	Profondeu	ır: 2,13m	Profonde	eur: 2,74m	
	P-9	P-10	P-9	P-10	
Densité humide (kg/m ³):	1874	1857	1789	2124	
Densité sèche (kg/m3):	1817	1786	1746	2046	
Teneur en eau (%):	3,2	4,0	2,5	3,8	

Figure B-3 : Résultats des essais au nucléo-densimètre P-9 à P-10

Figure 6.1 Définition des observations sur les historiques de déflexions mesurés.

Figure 6.2 Schématisation du milieu multicouche.

Figure 6.3 Influence du nombre de lancers de la masse tombante du FWD sur la déflexion selon les trois niveaux de charge considérés, 25, 35 et 55 kN.

SIMULATION DYNAMIQUE DE L'ESSAI FWD (Chicoutimi, 2.5 m)

Figure 6.4 Résultats d'analyse inverse des essais FWD à l'aide du programme DYNAPAV-UL à 2.50 m pour le niveau de charge de 25 kN.

СН		Cha	Charge Pulse Bassin					in de dé	n de déflexion mesuré (µm)						
(m)	Heure	Niveau	(kN)	(ms)	D_0	D ₂₀₀	D ₃₀₀	D ₄₅₀	D ₆₀₀	D ₇₅₀	D ₉₀₀	D ₁₂₀₀	D ₁₅₀₀		Commentaire
0.95	10:14	1	31.61	30.95	1562	886	414	245	176	135	112	86	64		Chargement préliminaire
0.95	10:14	1	31.84	31.15	1446	831	401	247	182	140	116	88	64		Chargement préliminaire
0.95	10:14	1	30.13	31.32	1324	759	367	232	175	135	112	86	62		Chargement préliminaire
0.95	10:17	1	27.70	31.65	1249	681	343	217	159	128	105	79	60		Chargement préliminaire
0.95	10:17	2	35.88	30.98	1604	885	448	279	201	161	133	99	78		Chargement préliminaire
0.95	10:20	1	27.98	31.67	1234	669	335	212	157	123	102	69	57	X	Chargements enregistrés
0.95	10:23	2	36.05	30.70	1442	805	427	275	202	157	132	98	75	X	Chargements enregistrés
0.95	10:26	3	55.92	30.00	2193	1398	718	416	289	207	181	136	107	X	Chargements enregistrés
2.0	10:29	1	31.01	31.59	2328	1122	537	305	199	152	119	93	67		Chargement préliminaire
2.0	10:29	3	50.96	30.91	3879	1634	832	480	317	244	202	140	115		Chargement préliminaire
2.0	10:31	1	26.58	32.25	1542	782	408	239	166	127	107	75	58		Chargement préliminaire
2.0	10:31	2	35.04	31.67	1916	1008	528	305	212	164	139	97	77		Chargement préliminaire
2.0	10:31	3	52.85	30.70	3436	1568	826	470	317	241	203	149	110		Chargement préliminaire
2.0	10:36	1	31.88	31.94	1703	913	480	285	195	153	127	95	71	X	Chargements enregistrés
2.0	10:38	2	35.19	31.07	1729	946	513	309	212	168	140	101	77	X	Chargements enregistrés
2.0	10:39	3	55.42	30.28	3219	1583	846	490	327	253	210	146	114	X	Chargements enregistrés
3.0	10:41	1	29.78	31.58	1461	834	503	304	211	170	139	103	82		Chargement préliminaire
3.0	10:41	2	34.74	30.90	1718	987	596	357	249	204	154	112	85		Chargement préliminaire
3.0	10:42	3	49.87	30.57	2844	1581	931	546	369	295	223	157	121		Chargement préliminaire
3.0	10:45	1	31.55	31.65	1606	932	556	329	227	181	145	111	78	X	Chargements enregistrés
3.0	10:51	2	34.96	31.10	1666	984	597	359	252	199	159	114	87	X	Chargements enregistrés
3.0	10:51	3	54.79	30.24	2107	1642	986	579	397	312	251	178	131	X	Chargements enregistrés
4.0	10:54	1	29.59	31.81	1499	886	609	386	278	216	165	117	80		Chargement préliminaire
4.0	10:55	2	32.68	31.55	1622	975	676	431	314	238	183	127	90		Chargement préliminaire
4.0	10:55	3	43.66	30.94	3520	1488	1028	646	457	337	257	178	123		Chargement préliminaire
4.0	10:58	1	30.73	32.08	1564	973	649	423	307	227	175	120	87	X	Chargements enregistrés
4.0	11:03	2	33.88	31.54	1638	1037	697	457	335	245	201	128	93	X	Chargements enregistrés
4.0	11:03	3	53.79	30.58	2258	1731	1187	766	543	389	304	202	145	X	Chargements enregistrés

Tableau B-1 : Données de déflexion des essais du FWD sur le remblai aux distances de 0.95, 2.0, 3.0 et 4.0 m.

Tableau B-2 : Données de déflexion des essais du FWD sur le remblai à 2.5 m de distance.

СН		ChargePulseBassin de déflexion mesuré (µm)							T 1 /2						
(m)	Heure	Niveau	(kN)	(ms)	D_0	D ₂₀₀	D ₃₀₀	D ₄₅₀	D ₆₀₀	D ₇₅₀	D ₉₀₀	D ₁₂₀₀	D ₁₅₀₀	Traite	Commentaire
2.5	11:13	1	24.24	31.76	1631	784	349	122	90	108	93	66	53		Chargement préliminaire
2.5	11:13	1	27.33	31.75	1572	792	394	173	125	126	106	77	60		Chargement préliminaire
2.5	11:13	1	28.63	31.80	1493	776	412	204	147	137	114	84	65		Chargement préliminaire
2.5	11:13	1	29.40	31.40	1439	762	419	221	160	145	120	87	68		Chargement préliminaire
2.5	11:13	1	29.62	31.28	1395	750	422	231	169	149	124	89	69		Chargement préliminaire
2.5	11:13	1	30.01	31.22	1366	741	425	238	175	152	126	91	71		Chargement préliminaire
2.5	11:13	1	30.02	31.29	1347	737	428	244	180	154	127	91	70		Chargement préliminaire
2.5	11:13	1	30.31	31.48	1330	733	430	248	184	156	129	93	70		Chargement préliminaire
2.5	11:13	1	30.45	31.43	1315	730	432	251	187	158	129	94	71		Chargement préliminaire
2.5	11:13	1	30.47	31.48	1302	727	434	254	189	159	130	94	72		Chargement préliminaire
2.5	11:13	1	30.60	31.40	1294	726	435	257	191	160	131	94	74		Chargement préliminaire
2.5	11:13	1	30.55	31.47	1283	724	436	259	192	161	132	94	73		Chargement préliminaire
2.5	11:13	1	30.64	31.46	1276	722	437	260	194	162	132	95	75		Chargement préliminaire
2.5	11:13	1	30.67	31.49	1270	721	438	262	196	162	133	95	75		Chargement préliminaire
2.5	11:13	1	30.77	31.40	1262	718	438	263	197	163	134	95	75		Chargement préliminaire
2.5	11:13	1	30.89	31.41	1258	719	440	265	198	164	134	95	76		Chargement préliminaire
2.5	11:13	1	30.81	31.37	1251	717	440	265	198	164	134	95	76		Chargement préliminaire
2.5	11:13	1	30.83	31.42	1247	718	441	267	199	164	134	95	76		Chargement préliminaire
2.5	11:13	1	30.90	31.38	1244	718	442	268	200	165	134	96	76		Chargement préliminaire
2.5	11:13	1	30.93	31.36	1239	717	442	269	201	165	134	96	76		Chargement préliminaire
2.5	11:15	2	35.79	31.01	1431	836	513	305	223	186	152	107	84		Chargement préliminaire
2.5	11:15	2	34.29	31.12	1368	798	490	292	215	178	147	104	81		Chargement préliminaire
2.5	11:15	2	33.43	31.19	1335	779	479	287	212	176	144	102	80		Chargement préliminaire
2.5	11:15	2	33.71	31.46	1341	783	482	289	214	177	146	103	81		Chargement préliminaire
2.5	11:15	2	33.80	31.24	1339	783	483	291	215	178	146	103	82		Chargement préliminaire
2.5	11:15	2	33.87	30.93	1338	784	484	292	216	179	147	103	81		Chargement préliminaire
2.5	11:15	2	33.74	31.04	1336	784	485	293	216	179	147	103	81		Chargement préliminaire
2.5	11:15	2	33.85	31.06	1335	784	487	295	218	180	148	104	82		Chargement préliminaire
2.5	11:15	2	33.89	31.22	1331	783	486	295	218	180	148	104	82		Chargement préliminaire
2.5	11:15	2	33.87	31.13	1331	785	488	296	219	181	147	104	82		Chargement préliminaire

СН		Cha	arge	Pulse		Bassin de déflexion mesuré (µm)					— • • •				
(m)	Heure	Niveau	(kN)	(ms)	D_0	D ₂₀₀	D ₃₀₀	D ₄₅₀	D ₆₀₀	D ₇₅₀	D ₉₀₀	D ₁₂₀₀	D ₁₅₀₀	Traite	Commentaire
2.5	11:15	2	33.84	31.17	1328	784	488	297	219	181	148	104	84		Chargement préliminaire
2.5	11:15	2	33.87	31.09	1325	784	489	297	220	182	148	104	85		Chargement préliminaire
2.5	11:15	2	34.01	31.31	1322	783	489	298	220	182	149	104	85		Chargement préliminaire
2.5	11:15	2	34.03	31.19	1322	784	490	299	221	182	149	104	86		Chargement préliminaire
2.5	11:15	2	33.98	31.16	1319	783	490	299	221	182	149	104	86		Chargement préliminaire
2.5	11:15	2	33.99	31.16	1317	782	491	299	222	182	149	104	93		Chargement préliminaire
2.5	11:15	2	34.00	31.17	1316	783	492	300	223	183	149	105	92		Chargement préliminaire
2.5	11:15	2	33.99	31.24	1311	781	491	300	222	182	149	104	92		Chargement préliminaire
2.5	11:15	2	33.94	31.20	1312	783	492	301	223	183	149	105	92		Chargement préliminaire
2.5	11:15	2	33.99	31.19	1310	782	493	301	224	183	150	105	93		Chargement préliminaire
2.5	11:16	3	51.67	30.21	2193	1334	815	440	307	258	212	140	98		Chargement préliminaire
2.5	11:16	3	47.58	30.54	2045	1226	744	409	290	245	202	139	100		Chargement préliminaire
2.5	11:16	3	47.99	30.22	2105	1252	759	416	296	249	205	140	102		Chargement préliminaire
2.5	11:16	3	48.11	30.33	2112	1253	760	420	299	251	207	141	105		Chargement préliminaire
2.5	11:16	3	48.35	30.32	2113	1253	761	423	301	253	208	142	104		Chargement préliminaire
2.5	11:16	3	48.05	30.32	2101	1242	755	422	300	252	207	143	109		Chargement préliminaire
2.5	11:16	3	48.85	30.31	2110	1253	763	428	304	255	210	142	105		Chargement préliminaire
2.5	11:16	3	48.88	30.34	2104	1253	764	430	306	256	211	142	104		Chargement préliminaire
2.5	11:16	3	48.82	30.48	2098	1254	767	432	308	257	213	148	102		Chargement préliminaire
2.5	11:16	3	49.22	30.28	2096	1252	767	434	309	258	214	145	107		Chargement préliminaire
2.5	11:21	1	32.12	31.11	1287	758	470	288	211	172	149	103	78	X	Chargements enregistrés
2.5	11:22	2	35.58	30.87	1394	828	518	317	233	190	163	112	86	X	Chargements enregistrés
2.5	11:22	3	55.91	30.00	2257	1368	852	486	349	287	243	169	123	X	Chargements enregistrés

IRSST - Réduction de la distance de garde en tête des excavations étançonnées par un tuyau de tôle en47acier ondulé et galvanisé – Annexes au rapport de recherche47

CH		Cha	arge	Pulse			Bass	in de dé	flexion	mesuré	(µm)			T _{enrobé}		
(m)	Heure	Niveau	(kN)	(ms)	D_0	D ₂₀₀	D ₃₀₀	D ₄₅₀	D ₆₀₀	D ₇₅₀	D ₉₀₀	D ₁₂₀₀	D ₁₅₀₀	(°C)	Traité	Commentaire
12.0	11:37	1	31.02	30.11	888	697	551	368	239	162	115	88	65	4		
12.0	11:37	1	30.99	30.02	886	695	547	369	240	164	113	88	65	4		
12.0	11:37	1	30.47	30.19	868	682	538	363	235	161	111	85	63	4		
12.0	11:37	1	30.28	30.03	854	672	531	358	233	158	108	85	62	4	X	
12.0	11:37	2	34.16	29.84	967	761	604	411	269	183	128	93	72	4		
12.0	11:37	2	32.24	29.89	910	718	570	388	254	171	119	85	60	4		
12.0	11:37	2	31.36	29.96	894	705	561	383	250	169	117	84	63	4		
12.0	11:37	2	32.99	29.96	931	733	584	399	261	175	122	86	63	4	X	
12.0	11:38	3	50.93	28.92	1494	1180	936	641	423	276	199	137	106	4		
12.0	11:38	3	48.36	29.11	1430	1129	898	616	407	268	194	135	105	4		
12.0	11:38	3	48.67	29.12	1443	1138	910	625	412	271	196	137	100	4		
12.0	11:38	3	48.52	29.17	1449	1145	917	627	416	276	196	139	109	4	X	

Tableau B-3 : Données de déflexion des essais du FWD sur le stationnement.

			Bas	sin de déflexion (µm)						
Position		Mesurés		D (1	YNAPAV-U plaque rigide	JL e)	MODCOMP 5 (plaque flexible)			
Q _{max} (kN)	27.415	36.119	55.968	Dynaı	nique – éla	stique	Stat	ique - élastique		
Niveau	25 kN	35 kN	55 kN	25 kN	35 kN	55 kN	25 kN	35 kN	55 kN	
0	1234	1442	2186	1408	1618	2365	1331	1686	3418	
200	670	805	1398	683	817	1166	538	683	1258	
300	336	427	717	392	491	680	335	427	718	
450	212	275	416	243	313	428	215	275	418	
600	157	202	288	173	225	309	157	202	289	
750	124	157	207	134	174	243	124	160	223	
900	102	132	181	107	141	200	101	131	181	
1200	69	98	136	75	101	147	74	96	136	
1500	57	75	107	59	80	117	57	75	107	
Écart relatif m	noyen globa	al, E (%)		10.75	11.57	18.51	N/A	N/A	N/A	
Erreur RMS (%)			10.49	10.11	10.49	7.40	7.61	19.26	
			Module	d'Young ée	quivalent (MPa)			-	
1- Coussin gran	ulaire		E_{I}	54.1	65.1	66.5	77.6	79.1	56.5	
2- Sable (sous-couche 1) E_2 68.4 69.6 80.2 77.9 79.						79.4	87.3			
3- sable (sous-c	ouche 2)		E_{3}	145.0	122.1	104.8	100.0	95.3	102.0	

Tableau 6.1 Résultats d'analyse inverse des essais FWD à 0.95 m de distance

Tableau 6.2 Résultats d'analyse inverse des essais FWD à 2.00 m de distance

			Bas	sin de défl	exion (µm))				
Position		Mesurés		D (1	YNAPAV-U plaque rigide	JL e)	MODCOMP 5 (plaque flexible)			
Q _{max} (kN)	31.871	35.225	55.335	Dynai	nique – éla	stique	Statique – élastique			
Niveau	25 kN	35 kN	55 kN	25 kN	35 kN	55 kN	25 kN	35 kN	55 kN	
0	1703	1729		1910	1943		2256	2367	4149	
200	913	947	1584	911	950		836	885	1506	
300	480	513	846	513	551		480	513	846	
450	285	309	490	314	343		281	304	482	
600	195	212	327	223	244		195	212	327	
750	154	168	253	172	189		151	164	249	
900	128	140	211	138	152		122	133	199	
1200	95	101	146	97	107		91	99	147	
1500	71	77	114	76	84		71	77	114	
Écart relatif n	noyen globa	al, E (%)		11.14	11.58		N/A	N/A	N/A	
Erreur RMS (%)			9.09	10.10		11.42	12.68	2.57 ¹	
			Module	d'Young é	quivalent (MPa)				
1- Coussin gran	nulaire		E_{I}	45.4	50.8		49.0	51.9	45.8	
2- Sable (sous-	couche 1)		E_2	61.4	61.9		73.0	73.9	73.7	
3- sable (sous-c	couche 2)		E_3	127.6	123.2		88.7	90.7	99.3	

Note : 1 la déflexion D₀ n'est pas considérée dans le calcul de l'erreur RMS.

			Bas	sin de défl	exion (µm))				
Position		Mesurés		DY	YNAPAV-I	UL	M	IODCOMP	5	
				(p	laque rigid	e)	(plaque flexible)			
Q _{max} (kN)	32.112	35.653	55.947	Dynamique – élastique			Stat	ique – élast	ique	
Niveau	25 kN	35 kN	55 kN	25 kN	35 kN	55 kN	25 kN	35 kN	55 kN	
0	1287	1394	(-2260)	1449	1588	2595	1326	1547	3599	
200	758	828	1369	793	862	1382	601	729	1288	
300	470	518	852	514	557	875	408	506	739	
450	288	317	487	342	372	579	278	350	460	
600	211	233	348	248	272	424	208	263	344	
750	172	190	287	191	212	332	164	209	280	
900	149	163	243	153	172	270	135	172	238	
1200	103	112	170	108	121	194	100	128	182	
1500	78	86	123	86	93	151	80	103	146	
Écart relatif m	oyen globa	ıl, E (%)		11.00	10.80	16.65	N/A	N/A	N/A	
Erreur RMS (S	%)			26.01	11.43	92.43	9.11	12.10	21.56	
			Module	d'Young ée	quivalent (MPa)				
1- Coussin granulaire E_1 72.4 72.4 67.5 86.0 101.0 5								53.5		
2- Sable (sous	54.9	57.2	58.7	59.0	61.6	78.0				
3- sable (sous-	couche 2)		E_3	114.6	139.8	113.0	69.8	67.0	60.6	

Tableau 6.3 Résultats d'analyse inverse des essais FWD à 2.50 m de distance

50

Tableau 6.4 Résultats d'analyse inverse des essais FWD à 3.05 m de distance

Bassin de déflexion (µm)											
Position		Mesurés		DY (p	YNAPAV-I laque rigid	UL e)	MODCOMP 5 (plaque flexible)				
Q _{max} (kN)	31.506	34.976	54.793	54.793 Dynamique – élastique				Statique – élastique			
Niveau	25 kN	35 kN	55 kN	25 kN	35 kN	55 kN	25 kN	35 kN	55 kN		
0	1606	1665		1801	1865		2571	2665	4594		
200	932	985	1642	928	985		961	1014	1711		
300	555	597	986	570	620		556	597	986		
450	329	359	579	367	405		328	359	577		
600	227	252	397	264	292		227	252	397		
750	181	199	312	203	225		174	194	303		
900	146	160	251	163	181		139	156	240		
1200	112	115	178	115	128		102	113	173		
1500	78	87	131	91	101		78	87	131		
Écart relatif m	oyen globa	al, E (%)		11.61	11.93		N/A	N/A	N/A		
Erreur RMS (%)			26.01	11.95		20.39	20.08	2.58 ¹		
			Module	d'Young ée	quivalent (MPa)					
1- Coussin granulaire E_1 52.5 58.2							42.8	46.3	41.6		
2- Sable (sous	51.0	51.1		59.6	59.4	57.7					
3- sable (sous-	-couche 2)		E_3	108.6	107.6		84.8	84.3	91.1		

Note : ¹ la déflexion D_0 n'est pas considérée dans le calcul de l'erreur RMS.

			Bas	sin de défl	exion (µm))			
Position		Mesurés		D	YNAPAV-I	UL	M	IODCOMP	5
			1	(p	laque rigid	le)	(pl	aque flexib	ole)
Q _{max} (kN)	30.657	33.882	53.794	Dynaı	nique – éla	stique	Statique - élastique		
Niveau	25 kN	35 kN	55 kN	25 kN	35 kN	55 kN	25 kN	35 kN	55 kN
0	1564	1638		1701	1772		2419	2533	4586
200	974	1037	1732	977	1039		1014	1077	1886
300	648	697	1187	663	716		649	697	1187
450	422	457	766	451	492		423	459	759
600	307	335	543	327	359		307	335	543
750	227	246	389	249	274		236	257	412
900	176	201	304	197	216		185	202	320
1200	120	128	202	135	149		124	134	211
1500	87	93	145	106	116		87	93	145
Écart relatif m	oyen globa	al, E (%)		11.14	11.69		N/A	N/A	N/A
Erreur RMS (S	%)			26.01	11.90		18.43	18.41	4.25 ¹
			Module	d'Young ée	quivalent (MPa)			
1- Coussin gra	inulaire		E_{I}	63.6	70.0		48.3	51.5	53.5
2- Sable (sous	-couche 1)		E_2	38.5	38.8	.8 37.1 37.0			
3- sable (sous-	-couche 2)		E_3	118.8	118.5		101.0	109.0	60.6

Tableau 6.5 Résultats d'analyse inverse des essais FWD à 4.07 m de distance

Note : 1 la déflexion D₀ n'est pas considérée dans le calcul de l'erreur RMS.

Tableau 6.6 Résultats d'analyse inverse des essais FWD à 12.0 m de distance sur le stationnement

)								
Position		Mesurés		DY	YNAPAV-I	UL	MODCOMP 5				
0 (111)			10.1.11	(p	laque rigio	e)	(p)				
Q_{max} (kN)	30.184	32.797	48.161	Dynar	nique – éla	stique	Stat	ique - élast	ique		
Niveau	25 kN	35 kN	55 kN	25 kN	35 kN	55 kN	25 kN	35 kN	55 kN		
0	855	931	1449	873	967	1502	854	931	1449		
200	672	734	1144	668	740	1164	671	735	1148		
300	531	584	917	519	575	914	531	584	917		
450	358	399	627	343	378	609	356	394	624		
600	233	261	416	230	251	407	233	261	417		
750	158	175	276	163	176	286	156	175	283		
900	108	122	196	126	135	217	111	124	204		
1200	85	86	139	90	97	154	73	78	132		
1500	62	63	109	72	77	123	62	63	109		
Écart relatif m	oyen globa	al, E (%)		7.28	7.87	7.95	N/A	N/A	N/A		
Erreur RMS (%)			8.18	9.47	6.81	4.92	3.15	2.35		
			Module	d'Young éc	quivalent (MPa)					
1- Revêtement	t		E_{I}	5500	5500	5700	7260	7380	7160		
2- Fondation			E_2	45.0	43.4	40.0	32.9	33.8	31.5		
3- Sable (sous	$\frac{E_2}{E_3}$					80.0	121.0	98.8	97.0		
4- sable (sous-	-couche 2)		E_4	260.0	259.0	350.0	66.7	80.4	64.6		

ANNEXE C – RÉSULTATS DE L'ANALYSE INVERSE DYNAMIQUE DES ESSAIS FWD

Figure C-1 : Résultat de l'analyse inverse dynamique de l'essai FWD à 0.95 m de distance pour le niveau de charge de 25 kN.

Figure C-2 : Résultat de l'analyse inverse dynamique de l'essai FWD à 0.95 m de distance pour le niveau de charge de 35 kN.

Figure C-3 : Résultat de l'analyse inverse dynamique de l'essai FWD à 0.95 m de distance pour le niveau de charge de 55 kN.

Figure C-4 : Résultat de l'analyse inverse dynamique de l'essai FWD à 2.00 m de distance pour le niveau de charge de 25 kN.

Figure C-5 : Résultat de l'analyse inverse dynamique de l'essai FWD à 2.00 m de distance pour le niveau de charge de 35 kN.

Figure C-6 : Mesures de déflexions de l'essai FWD à 2.00 m de distance pour le niveau de charge de 55 kN.

Figure C-7 : Résultat de l'analyse inverse dynamique de l'essai FWD à 2.50 m de distance pour le niveau de charge de 25 kN.

Figure C-8 : Résultat de l'analyse inverse dynamique de l'essai FWD à 2.50 m de distance pour le niveau de charge de 35 kN.

Figure C-9 : Résultat de l'analyse inverse dynamique de l'essai FWD à 2.50 m de distance pour le niveau de charge de 55 kN.

Figure C-10 : Résultat de l'analyse inverse dynamique de l'essai FWD à 3.05 m de distance pour le niveau de charge de 25 kN.

Figure C-11 : Résultat de l'analyse inverse dynamique de l'essai FWD à 3.05 m de distance pour le niveau de charge de 35 kN.

Figure C-12 : Mesures de déflexions de l'essai FWD à 3.05 m de distance pour le niveau de charge de 55 kN.

Figure C-13 : Résultat de l'analyse inverse dynamique de l'essai FWD à 4.07 m de distance pour le niveau de charge de 25 kN.

Figure C-14 : Résultat de l'analyse inverse dynamique de l'essai FWD à 4.07 m de distance pour le niveau de charge de 35 kN.

Figure C-15 : Mesures de déflexions de l'essai FWD à 4.07 m de distance pour le niveau de charge de 55 kN.

Figure C-16 : Résultat de l'analyse inverse dynamique de l'essai FWD à 12.0 m de distance sur le stationnement pour le niveau de charge de 25 kN.

Figure C-17 : Résultat de l'analyse inverse dynamique de l'essai FWD à 12.0 m de distance sur le stationnement pour le niveau de charge de 35 kN.

Figure C-18 : Résultat de l'analyse inverse dynamique de l'essai FWD à 12.0 m de distance sur le stationnement pour le niveau de charge de 55 kN.

ANNEXE D – HISTORIQUES DE CONTRAINTES RADIALES CALCULÉES AVEC DYNAPAV-UL

Figure 7.1 Déplacements théoriques horizontaux prédits par DYNAPAV-UL pour les essais effectués à 0.95 m de la paroi de l'étançonnement.

Figure 7.2 Déplacements théoriques horizontaux prédits par DYNAPAV-UL pour les essais effectués à 2.00 m de la paroi de l'étançonnement.

Figure 7.3 Déplacements théoriques horizontaux prédits par DYNAPAV-UL pour les essais effectués à 2.50 m de la paroi de l'étançonnement.

Figure 7.4 Déplacements théoriques horizontaux prédits par DYNAPAV-UL pour les essais effectués à 3.05 m de la paroi de l'étançonnement.

IRSST - Réduction de la distance de garde en tête des excavations étançonnées par un tuyau de tôle en 79 acier ondulé et galvanisé – Annexes au rapport de recherche

Figure 7.5 Déplacements théoriques horizontaux prédits par DYNAPAV-UL pour les essais effectués à 4.07 m de la paroi de l'étançonnement.

Figure 7.6 Contraintes radiales prédites par DYNAPAV-UL pour les essais effectués à 0.95 m de la paroi de l'étançonnement.

Figure 7.7 Contraintes radiales prédites par DYNAPAV-UL pour les essais effectués à 2.00 m de la paroi de l'étançonnement.

Figure 7.8 Contraintes radiales prédites par DYNAPAV-UL pour les essais effectués à 2.50 m de la paroi de l'étançonnement.

Figure 7.9 Contraintes radiales prédites par DYNAPAV-UL pour les essais effectués à 3.05 m de la paroi de l'étançonnement.

Figure 7.10 Contraintes radiales prédites par DYNAPAV-UL pour les essais effectués à 4.07 m de la paroi de l'étançonnement.