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ABSTRACT 

A significant part of industrial hygiene activities is the measurement of workers’ occupational 
exposure levels. Considerable spatial and temporal variability is usually observed in most 
exposure assessment surveys, frequently with up to 10-fold variations in exposure intensity, 
despite apparently similar conditions. This has historically represented an important challenge to 
the interpretation of measured levels with regard to comparison with occupational exposure 
limits (OELs). There now exists a consensus framework, progressively developed during the 
last two decades, for the analysis of exposure levels related to exposure limits. Within this 
framework, exposure levels are assumed to follow, at least approximately, a lognormal 
distribution. Several parameters from the underlying distribution, deemed associated with health 
risk, are estimated from a number of measurements and are interpreted relative to the OEL. 

These developments, although permitting a better assessment of risk compared to historical 
approaches, have not been widely adopted by industrial hygiene practitioners, and involve 
notions of statistics not usually taught in traditional education programs. Moreover they require 
calculations not usually feasible with common tools such as calculators or spreadsheet 
programs. While some specific tools have been developed over the years, usually through 
volunteer initiatives, most are lacking in some areas, be it accessibility, functionality, user-
friendliness or complexity. In addition, uncertainty in parameter estimates has mostly been 
taken into account through formal hypothesis tests or the calculation of confidence intervals, the 
results of which are not easily conveyed to decision makers, hampering the ability of 
practitioners to efficiently communicate risk. Finally, available tools are standalone, and are not 
easily integrated within an existing data management structure. 

The WebExpo project aimed at improving current practices in the interpretation of occupational 
exposure levels through the creation of a library of algorithmic solutions to frequently asked risk 
assessment questions in industrial hygiene. Most of these questions require the estimation of 
parameters from one or several distributions. WebExpo has utilized Bayesian statistics to 
perform these tasks. Bayesian methods were chosen due to two main advantages: first, they 
provide inferences in direct probabilistic terms (e.g. what are the odds that…?), facilitating risk 
communication. Second, they tackle methodological issues rarely taken into account, such as 
the data reported as not detected (a frequent concern). The three specific objectives of 
WebExpo included: 1) to assess current needs in calculation, documentation and risk 
communication associated with the interpretation of occupational exposure measurement data, 
2) to create a library of computer programming codes based on Bayesian statistics that answers 
a set of data interpretation questions elaborated in specific objective 1, 3) to create prototype 
tools using the code from specific objective 2 that computes industrial hygiene statistics and 
answers to needs established in specific objective 1. 

Specific objective 1 was achieved through a review of international guidelines and recent 
relevant literature, complemented by meetings with stakeholder and expert committees. Specific 
objective 2 was achieved through creating Bayesian solutions to the list of calculations finalised 
in step 1, implementing these algorithms in statistical code, and translating the code into 
programming language. Finally, the programming algorithms were used to create functioning 
data analysis prototypes able to showcase the calculation and useable as a starting point for the 
creation of practical data analysis tools. 
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The list of relevant calculations resulting from specific objective 1, and later implemented 
mathematically as well as in the form of algorithms and prototypes, included two main avenues. 
The first involved estimating parameters from one distribution, i.e., the traditional “similar 
exposure group” approach. The measurements are assumed to come from a distribution of 
exposures shared by a group of workers performing similar tasks. As an illustration, this model 
permits to answer the question: “What is the probability that unmeasured exposures for this 
group exceed the OEL more than 5% of the time?” The second model extends the first model by 
permitting to estimate to what extent a group of workers does or does not share similar 
exposures. The global exposure variability is split into within- and between-worker variabilities. It 
is possible to assess the group risk but also whether some individual workers might experience 
higher risk than the group. As an illustration, this model permits to answer the question: 
“Although group exposure seems acceptable, what is the probability that a randomly selected 
worker might experience exposure exceeding the OEL more than 5% of the time?” All models 
include the seemless treatment of non-detects and take into account measurement errors 
associated with the observations. 

The resulting algorithms are available in R, aimed at academics, C#, for standalone offline or 
server-based applications, or JavaScript, for web-based applications. They include data entry, 
core Bayesian estimation, numerical data interpretation modules, as well as a limited user 
interface for the C# and JavaScript prototypes. The code is publicly available under the open 
source licence Apache 2.0 to allow users to build their own applications. 

The WebExpo project should result in a comprehensive toolbox, available to the industrial 
hygiene community for the interpretation of occupational exposure levels, with the added 
flexibility for users to build or adapt their own software instead of using a new one. 
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1. INTRODUCTION 

1.1 Control and management of airborne chemical exposures in the workplace 

Industrial hygiene’s main goal is to identify hazards, and evaluate, control and manage risks in 
the workplace. A significant part of these activities relies on acquiring knowledge of exposure 
levels experienced by workers through breathing air contaminated with chemicals. Such 
exposure assessment can be required for several purposes. Chemical risk assessment in the 
workplace often relies on comparing workers’ exposures to occupational exposure limits (OELs) 
or guidelines set by various organizations or governing bodies. Exposure assessment can also 
be performed to understand the factors that determine exposure intensity in order to target 
intervention. 

While some exposure assessment needs can be met through indirect methods such as control 
banding or the use of mathematical models, in many situations direct measurement of exposure 
through sampling and analysis of the air breathed by workers is necessary. 

1.2 Implications of environmental variability on exposure assessment: the 
exposure profile 

When measuring exposures in the workplace, the aim is generally not to acquire knowledge 
only about the particular period sampled, but to infer from this period what is usually happening 
under the same circumstances. Hence the objective is to obtain a representative picture of 
exposures corresponding to a set of conditions. For example, when evaluating a worker’s 
exposure level for a full work shift, one would want to use that exposure information to gain 
knowledge about all other unmeasured days. Indeed, it’s the ensemble of exposure-days 
experienced by the workers, the so-called exposure profile, that reflects risk. 

It was recognized early on that exposure levels in the workplace vary considerably across 
location, time, and workers. Even measurements integrated over a full work shift and repeatedly 
taken for a similar work situation can often show 10-fold variations from one day to another (N. 
Esmen, 1979; Kumagai & Matsunaga, 1995; Oldham, 1953; Rappaport, 2000). Therefore, 
exposure corresponding to a particular situation (e.g. painting metal parts in a body shop) 
cannot be described by a typical single concentration value. It is rather characterized by an 
ensemble of different exposure levels due to minute variations in many determining factors (e.g. 
surface being painted, open/closed doors, air movement, workers’ experience, etc.). Estimating 
such variability is essential in order to draw an accurate portrait of the exposure profile and 
reliably assess risk. 

1.3 Statistics in industrial hygiene: the lognormal distribution 

Statistical methods developed to address the challenge posed by environmental variability 
started to appear in the scientific literature in the 1960s (Breslin, Ong, Glauberman, George, & 
Leclare, 1967; Kerr, 1962; Roach, 1966), and progressively coalesced into guidelines published 
by several institutions that inform the practice of occupational hygiene in various countries. 
Namely, the American Industrial Hygiene Association (AIHA) (Hawkins, Norwood, & Rock, 
1991), the National Institute of Occupational Safety and Health (NIOSH) (N. A. Leidel, Busch, & 
Lynch, 1977), the British and Dutch occupational health societies (BOHS and NVvA 
respectively) (BOHS-NVvA, 2011; BOHS Technology Committee Working Group, 1993) and the 
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Institut National de Recherche et de Sécurité (INRS) (INRS, 2018) in France published 
guidelines for the comparison of exposure levels to exposure limits. The European community 
recently updated recommendations (CEN, 2018) initially issued in 1995 (CEN, 1995). 

These methods assume that environmental variability is adequately modelled by the lognormal 
distribution model. Under this model, it is assumed, for a given exposure group (e.g. stainless 
steel welders in a part-manufacturing facility), that the ensemble of exposure levels experienced 
by workers in this group over a period of relatively stable work conditions (e.g. a year), hereafter 
referred to as the exposure distribution, follows a lognormal model. Then, when a set of 
measurements are taken, they are assumed to form a random sample from this exposure 
distribution. It is therefore possible to draw inferences on the exposure distribution from this 
sample, including measured and unmeasured days. There is now a large body of evidence 
suggesting that the lognormal model is a reasonable default assumption for most exposure 
situations involving vapors and aerosols (N. A. Esmen & Hammad, 1977; Kumagai & 
Matsunaga, 1995; Oldham, 1953; Roach, 1977). 

1.4 Current best practice in industrial hygiene measurement data interpretation 

The recommended approaches to comparing measured exposure levels to an exposure limit 
have significantly evolved during the last 30 years. The initial guideline utilizing a statistical 
framework for interpretation, proposed by NIOSH in 1977, recommended that exposures should 
be controlled so that less than 5% of exposure levels experienced by a worker exceed the OEL 
(N. A. Leidel et al., 1977) (i.e., the ‘exceedance fraction’ should be <5%; a concept also found in 
the more recent European standard ( CEN, 2018)). At the time, NIOSH proposed to verify this 
by comparing a single exposure value to an action limit set at half the OEL. Although this 
proposition was based on statistical grounds and provided a practical way to perform risk 
assessment, it was later recognised that comparing one measurement to half the OEL did not 
permit to ensure that 95% of unmeasured exposures would be under the OEL (Buringh & 
Lanting, 1991; Lyles & Kupper, 1996; Rappaport, 1984; Tornero-Velez, Symanski, Kromhout, 
Yu, & Rappaport, 1997). Further methodological developments in the following decades 
identified several risk metrics based on the lognormal distribution (see below) which were 
embraced in a 2008 workshop about the update of guidelines from NIOSH (Ramachandran, 
2008). In all cases, the exposure distribution is the ensemble of exposure concentrations 
experienced by a group of workers assumed to share similar exposure conditions (i.e., similar 
exposure group). 

1.4.1 Proportion of exposures exceeding the OEL (exceedance fraction) 

This metric is directly related to NIOSH’s early proposal that less than 5% of exposures should 
exceed the OEL (N. A. Leidel et al., 1977; N. Leidel, Busch, & Crouse, 1975). Applied to shift-
long exposures, the exposure distribution of interest would comprise all time-weighted-averaged 
(TWA) exposures occurring during a period of stable conditions, typically a year. One would 
then collect a random sample from this exposure distribution and estimate the exceedance 
fraction, i.e., the proportion of days expected to be associated with exposure over the OEL. The 
calculation of exceedance fraction is recommended by the INRS in France, the British and 
Dutch occupational hygiene societies (BOHS/NVvA) and the European committee for 
standardization (CEN), and forms the basis of the current French regulation (BOHS-NVvA, 
2011; CEN, 2018; INRS, 2018; République française, 2009). Because the estimate of the 
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exceedance fraction is made from a sample of the exposure distribution, uncertainty has to be 
taken into account through the calculation of confidence limits around the estimate. In the above 
recommendation, compliance with an OEL amounts to showing that the 70% upper confidence 
limit of the exceedance fraction is smaller than 5%. Put in simpler terms, one has to 
demonstrate with at least 70% certainty that less than 5% of exposures are over the OEL. 
Comparing the exceedance fraction to 5% is numerically equivalent to comparing the estimated 
95th percentile of the underlying distribution to the OEL (Clerc & Vincent, 2014). The latter 
calculation is recommended in the current guidelines from AIHA (Jahn, Bullock, & Ignacio, 
2015), with the associated determination of a 95% upper confidence limit (as opposed to 70% 
above). 

1.4.2 Long term arithmetic mean of the exposure distribution 

Toxicokinetic models have shown that the arithmetic mean (AM) of the long term distribution of 
exposure levels is a more adequate risk metric for evaluating cumulative damage from exposure 
to most chronic toxicants compared with metrics reflecting the upper tail of the distribution (as 
the exceedance fraction) (Rappaport, 1991). Within this framework, one would make a number 
of measurements, estimate the arithmetic mean of the underlying exposure distribution as well 
as the confidence limits around the point estimate, and compare them with the OEL. There has 
been some debate about the use of this metric, as it is less conservative than the exceedance 
metric (i.e., the AM just at the OEL for a typical lognormal distribution would correspond to 
approximately 30% exceedance) (P Hewett, 1997; Lyles & Kupper, 1996; Tornero-Velez et al., 
1997). The current guidelines from the AIHA recommend this approach in cases where the 
exposure limit has explicitly been defined as a long term cumulative dose index (‘LTA-OEL, 
Long term average OEL’) (Jahn et al., 2015). 

1.4.3 Probability of individual overexposure 

Following seminal work by Kromhout, Rappaport and Symanski (Kromhout, Symanski, & 
Rappaport, 1993; Rappaport, Kromhout, & Symanski, 1993), it was recognized in the late 1990s 
that the traditional practice of grouping workers performing similar tasks in the same 
environment into so-called homogeneous exposure groups could result in an underestimation of 
the risk for some members of the group. Thus, despite an acceptable group exposure 
distribution, high variability of exposure between workers could result in a distinct possibility that 
some workers would have an unacceptable individual exposure distribution. This was notably 
reflected in the AIHA guidelines, where “homogeneous exposure group” was replaced with 
“similar exposure group” (SEG) in most recent editions. The AIHA also recommends using 
analysis of variance methods when enough data are available to assess empirically whether the 
group is indeed ”homogeneous” (Hawkins et al., 1991; Ignacio & Bullock, 2008; Mulhausen & 
Diamano, 1998). This concept is an integral part of the most recent guidelines by the BOHS-
NVvA guideline “Testing Compliance with Occupational Exposure Limits for Airborne 
Substances” (BOHS-NVvA, 2011). The guideline is a 2-step process. The exposure group 
distribution is first evaluated to assess whether less than 5% of exposures are above the OEL 
(similar to the European recommendation mentioned above). If group risk is acceptable, then 
the guideline requires testing to determine whether there is significant exposure variability 
between workers within the group to estimate the probability that a random worker’s exposure 
distribution would correspond to an exceedance fraction above 5%. If this probability is 
estimated greater than 20%, the guideline’s diagnosis is “failure to comply”. In their early 
recommendations, Rappaport et al. and Lyles et al. suggested determining the probability that a 
random worker would have his own arithmetic mean above the OEL, and comparing it to a 
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threshold of 10% (Lyles, Kupper, & Rappaport, 1997b, 1997a; Rappaport, Lyles, & Kupper, 
1995). Within this framework, the extent of between-worker variation can be measured through 
calculating the within-worker correlation coefficient rho (rho is close to 1 when between-worker 
differences are high: the more different workers are, the more measurements for the same 
worker are close to each other relative to those of other workers), or by the so-called R ratio. 
The R ratio, initially proposed by Rappaport et al., approximately represents the ratio of the 
geometric mean (GM) of the most exposed worker to the GM of the least exposed worker 
(Rappaport et al., 1993). 

In summary, current guidelines in industrial hygiene data interpretation recommend four main 
metrics as the most relevant for risk assessment: exceedance fraction, 95th percentile, 
arithmetic mean for long-term averaged OELs, and probability of individual overexposure 
(overexposure defined as an individual’s arithmetic mean > OEL or 95th percentile > OEL). 
These metrics can also be used for analyses other than comparison with OELs, including 
evaluation of the effect of exposure determinants (e.g., effect of an intervention). 

1.5 Bayesian methods to interpret occupational exposure data 

Bayesian statistics represent an alternative method for drawing inference from a sample 
compared to the traditional ‘frequentist’ approach. In Bayesian inference, one establishes prior 
beliefs about a set of unknown parameters in the form of probability distributions. Bayes' 
theorem is then used to update these beliefs with empirical observations, resulting in “posterior” 
probability distributions for the parameters of interest. While the theory was established during 
the 18th century, Bayesian methods have only gained popularity relatively recently with the 
advent of high-computing power. Bayesian statistics have been proposed for use in 
occupational hygiene because they permit the integration of expert judgment (in the form of 
prior beliefs) into measurement data (S. Banerjee, Ramachandran, Vadali, & Sahmel, 2014; 
Paul Hewett, Logan, Mulhausen, Ramachandran, & Banerjee, 2006; Ramachandran & Vincent, 
1999; Sottas et al., 2009). 

1.5.1 Principle of Bayesian data analysis 

Bayesian data analysis begins with stating prior probability distributions for the parameters of a 
model, which represents current knowledge available about these parameters, prior to 
considering the current dataset.  These prior densities are then updated with information from 
the current dataset through the likelihood function, leading to the posterior distribution for the 
estimated parameters (Gelman, 2013; McElreath, 2016). The posterior density represents all 
available current knowledge, having combined past information with that in the current dataset. 
Thus all inferences are drawn from this posterior density. 

Bayes' theorem is used to perform this update, and can be stated simply as follows: 
 

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =  
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ∗ 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ𝑜𝑜𝑜𝑜𝑜𝑜

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑎𝑎𝑎𝑎𝑎𝑎
 

The normalizing constant serves only to ensure that the posterior integrates to one. 
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The prior density represents the information that is available prior to the analysis of the current 
dataset: it is possible to set these prior densities to have very low information content (these are 
labelled non-informative or weakly informative) or high information content. In the context of IH, 
informative priors are attractive because the information added to actual measurements 
compensates, to a certain extent, for the small sample sizes commonly encountered in industrial 
hygiene evaluations (Sudipto Banerjee, Ramachandran, Vadali, & Sahmel, 2014; Paul Hewett 
et al., 2006; Ramachandran & Vincent, 1999; Sottas et al., 2009). 

1.5.2 Bayesian data analysis in occupational health 

Among the the earliest mentions of Bayesian methods in our field, Ramachandran and Vincent 
proposed to inform historical exposure reconstruction with expert judgment (Ramachandran & 
Vincent, 1999). Hewett et al. proposed a tool to evaluate the probability of the 95th percentile of 
the exposure distribution being in each of the AIHA exposure control categories (Paul Hewett 
et al., 2006). Sottas et al. proposed a tool combining measurements with prior information from 
expert judgment, an existing exposure database, and a mechanistic model (Sottas et al., 2009). 
More recently, Banerjee et al., as well as McNally et al. proposed Bayesian frameworks for 
comparing exposure data with OELs (Sudipto Banerjee et al., 2014; McNally et al., 2014). Jones 
and Burstyn, as well as Quick et al. proposed specific prior distributions to use when interpreting 
measurement data with Bayesian statistics, while Huynh et al. compared traditional and 
Bayesian statistics for the treatment of non-detects (Huynh et al., 2016; Jones & Burstyn, 2017; 
Quick, Huynh, & Ramachandran, 2017). Most recently, Remy-Martin et al. and Groth et al. 
proposed Bayesian solutions to handle bivariate censored data for linear regression (Groth 
et al., 2017; Martin Remy & Wild, 2017). 

The first Bayesian tool for data analysis in IH involved defining prior information in the form of 
prior probabilities for the 95th percentile of the exposure distribution to be in each of the AIHA 
risk management categories, where probabilities were updated with the observed data through 
Bayesian analysis (Paul Hewett et al., 2006). Some years later, a bayesian model was 
described for the Advanced REACH tool (ART1), where a mechanistic model combined with a 
database of measurements associated with various exposure scenarios informs the prior 
distributions (McNally et al., 2014). Since then, several other options have been proposed to 
create informative priors, although none to our knowledge have been implemented in practical 
tools. They include using mechanistic models (Zhang, Banerjee, Yang, Lungu, & 
Ramachandran, 2009), existing relevant studies (Quick, Huynh, & Ramachandran, 2017), 
simple software such as EXCEL to estimate posterior distributions (Jones & Burstyn, 2017), and 
priors from historical exposure databases (Sottas et al., 2009). The traditional Bayesian 
approach recommends assessing robustness across a range of different priors to widen the 
interpretation of an analysis (Gelman, 2013) as it will apply to a wider variety of interpretations 
of prior data. For realistic sample sizes in our field (5-10 observations), informative priors such 
as those described above will typically have a non-trivial effect on the final exposure estimates 
(Jones & Burstyn, 2017). 

There are other significant advantages to using Bayesian statistics to interpret industrial hygiene 
data. Bayesian inference is probabilistic in nature, therefore instead of a hypothesis test or a 
confidence interval, whose correct interpretations are sometimes difficult to convey to the 
layman, Bayesian analysis provides answers to questions in the direct form of “what is the 
probability that” (e.g., what is the probability that this group is overexposed more than 5% of 
                                                
1 https://www.advancedreachtool.com/  

https://www.advancedreachtool.com/
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days; or, what is the probability that this intervention reduced exposure levels by at least 50%). 
This facilitates risk communication of complex concepts to management and workers. 
Furthermore, two technical challenges currently not appropriately tackled by traditional 
approaches, namely the handling of non-detects and incorporating measurement error into an 
assessment, are easily integrated into a Bayesian approach (Espino-Hernandez, Gustafson, & 
Burstyn, 2011; Mcbride, Williams, & Creason, 2007; McNally et al., 2014; Morton, Cotton, 
Cocker, & Warren, 2010; Pilote et al., 2000; Wild, Hordan, Leplay, & Vincent, 1996). 

The Bayesian framework therefore appears to be a very promising avenue to improve data 
analysis and interpretation in industrial hygiene. Unfortunately, its implementation is currently 
out of reach for most practitioners, as running Bayesian computations requires advanced 
software and technical knowledge, usually limited to academic specialists. 

1.6 Treatment of non-detects in occupational health measurement data 
interpretation 

In 1990, Hornung and Reed wrote that the reduction in exposure levels since the 70s, only 
partially mitigated by gradually improving analytical methods, increased the proportion of 
exposure data reported as non-detected (Hornung & Reed, 1990). More recently, Lavoué et al. 
reported 60% of non-detects in 1.4M measurements in the database from the Salt Lake City 
laboratory of the Occupational Safety and Health Administration (OSHA) in the US, which 
includes a majority of the samples taken by OSHA officers since 1979 (Lavoue, Friesen, & 
Burstyn, 2013). Sarazin et al. reported 40% of non-detects among 0.5M measurements in the 
IRSST laboratory information management system (LIMS) database, which contains analysis 
results from samples collected since 1985 in Quebec by governmental industrial hygienists 
(Sarazin, Labrèche, Lesage, & Lavoué, 2018). 

There is ample evidence that eliminating non-detects, or replacing them with any fixed value, 
will bias the estimation of most parameters of interest (D. R. Helsel, 2012; D Helsel, 2005). The 
amount of error increases with increasing proportion of non-detects, and is particularly severe 
when conducting statistical tests or calculating confidence intervals. Despite the pervasiveness 
of non-detects and the potential impact on data interpretation, few methodologies have been 
proposed in our field, even with editorials appearing in the Annals of Occupational Hygiene 
pleading for advances (Dennis Helsel, 2010; T. L. Ogden, 2010). Significant progress has been 
reported recently (Flynn, 2010; Ganser & Hewett, 2010; Groth et al., 2017; Krishnamoorthy, 
Mallick, & Mathew, 2009; Martin Remy & Wild, 2017), with several simulation studies comparing 
approaches (Paul Hewett & Ganser, 2007; Huynh et al., 2014, 2016). 

Bayesian methods are optimally suited for this challenge, since they allow for multiple censoring 
points, and they accurately estimate the inherent uncertainty when data values are known only 
up to an interval (Huynh et al., 2016). These recent developments have unfortunately not yet 
been implemented in practical data analysis tools. 

1.7 Measurement error in occupational health measurement data interpretation 

In addition to the variability in exposure levels themselves, each value in a set of exposure 
measurements is associated with an error due to sampling and analysis. This error, usually 
expressed as a coefficient of variation (CV) is taken into account when interpreting a single 
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exposure measurement, traditionally to assess whether the actual underlying exposure 
concentration was above or below an OEL. As an illustration, Leidel and Bush provide various 
formulas for estimating confidence intervals for a single time-weighted average value based on 
sampling and analytical error (N. A. Leidel & Busch, 2000). However, measurement error has 
not been considered when interpreting a set of exposure measurements to estimate parameters 
of the distribution of exposure levels. The challenge for this kind of analysis is that while 
environmental variability is usually modeled by a lognormal probability distribution, 
measurement error corresponding to sampling and analysis is rather modelled by a normal 
distribution (Ashley & Bartley, 2004; Bartley, 2001; Bartley & Lidén, 2008). This renders a 
combined analysis intractable with traditional statistics. 

The current practice of not considering measurement error when interpreting IH datasets is 
supported by two studies that approximated the normal probability distribution for measurement 
error with a lognormal probability distribution (Grzebyk & Sandino, 2005; Nicas, Simmons, & 
Spear, 1991). Nicas et al. (Nicas et al., 1991) estimated the contribution of measurement error 
to the total observed variability, while Grzebyk and Sandino (Grzebyk & Sandino, 2005) derived 
equations for the bias caused to the estimation of geometric mean (GM) and geometric 
standard deviation (GSD). Both concluded that measurement error had a negligible contribution 
when the corresponding CV is <30% and environmental variability is high (GSD>2). However, 
variability in some workplaces can be low, and some sampling methods have a considerable 
measurement error. Moreover, no approach yet has been proposed to estimate the error on a 
full-shift value calculated from a sequence of partial samples summing to less than the whole 
shift, which might be higher than the typical sampling and analysis error. Finally, neither 
Grzebyk and Sandino nor Nicas et al. estimated the impact on the decision metrics described 
above. Hence, while bias in the estimation of GSD (not taking measurement error into account 
would typically cause an overestimation of the true GSD) might appear small, the actual impact 
on the upper confidence limit for the 95th percentile of the exposure distribution (often used for 
decision making) might be significant. 

As in the case of non-detects, Bayesian statistics represent a promising alternative to 
frequentist statistics, as they can account for measurement error in a flexible manner (Espino-
Hernandez et al., 2011; Morton et al., 2010; Pilote et al., 2000). 

1.8 Challenges with data interpretation and risk communication 

Recent studies on expert judgment have shown that industrial hygienists performed better at 
gauging exposure levels when taught specific courses about lognormal statistics (P. Logan, 
Ramachandran, Mulhausen, & Hewett, 2009; P. W. Logan, Ramachandran, Mulhausen, 
Banerjee, & Hewett, 2011). In Quebec, modern approaches to data interpretation were reviewed 
and summarized in a recent IRSST report (Drolet et al., 2013). The authors specifically pointed 
out that these approaches require statistical notions and calculation tools not widespread in the 
field. 

Risk communication is also a challenge that would benefit from any improvement as statistical 
concepts often appear obscure to decision makers and workers. For instance, it is possible to 
have an exposure situation where a set of measurements are all under the OEL, but the 
estimated proportion of exposures expected to be over the OEL during unmeasured days would 
be much greater than the generally accepted 5%. This particular assessment would probably 
seem counter-intuitive to an uninformed audience but seem intuitively reasonable once one 
realizes that having several observations just below the cutoff value in a density with a long tail 
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(such as the lognormal) can result in a substantial probability of being in that tail, and hence 
above the OEL. The difficulty and lack of tools to efficiently communicate statistical results in a 
convincing way to non-specialists may also explain the slow appropriation of modern guidelines 
by practitioners in the field. 

1.9 Numerical and statistical analysis needs for the interpretation of occupational 
exposure data 

Statistical procedures for lognormal parameters and their uncertainty are not described in 
standard statistical textbooks, which are mostly centered on the normal distribution. Hence, they 
have been gradually developed since the 1960s onward and are evolving. While these 
developments trickled down from research papers into guidelines from industrial hygiene 
associations over time, their implementation can be complicated, making it difficult for 
practitioners who may lack the statistical knowledge and tools to perform such calculations. In 
Quebec, the Sampling guide for air contaminants in the workplace (Drolet & Beauchamp, 2013) 
is referred to by the regulation as a reference on the level of accuracy required for how to 
assess exposure regulatory compliance to OELs. The guide provides detailed instructions on 
how to compare one measurement to the OEL in order to determine whether exposure on the 
measured day was compliant, which is essential for regulatory compliance officers. However, it 
does not include comprehensive documentation of the lognormal distribution and the associated 
risk metrics. We identified only five available practical evaluation tools that focus on the 
estimation of the statistics necessary for risk assessment of airborne chemicals in industrial 
hygiene (i.e., industrial hygiene statistics): IHSTAT2 (free Excel worksheet), Altrex Chimie3 (free 
standalone downloadable software), IHData analyst4 (for free software), BW_Stat5 (free Excel 
worksheet) and HYGINIST6 (free standalone downloadable software). We should also mention 
ProUCL7, made available by the US Environmental Protection Agency, which is a generic 
toolset for environmental contamination and can be applied to occupational exposure datasets. 
Additionaly, the ART tool mentioned in section 1.5.2, while focusing more specifically on the risk 
assessment framework defined by the REACH regulation, allows estimating percentiles of an 
exposure distribution and associated uncertainty (McNally et al., 2014). The IH specific tools 
mentioned above share similarities, and all allow assessment of risk of overexposure based on 
at least one or several metrics. As such they represent an important step towards making 
industrial hygiene statistics more accessible. However, none provides a single integrated and 
comprehensive solution to lognormal data interpretation. Most notable limitations include lack of 
adequate treatment of non-detects, data interpretation outside of assessment of overexposure 
(e.g., effect of an intervention), and support for probabilistic risk communication. 

In addition, many institutions and private companies performing exposure measurement 
routinely maintain their own exposure databank; however, none of the tools presented above 
can be easily integrated in an existing data management system. Therefore, in order to be able 
to perform the relevant calculations, it is necessary to export data into the existing tools and 
                                                
2 https://www.aiha.org/get-involved/VolunteerGroups/Pages/Exposure-Assessment-Strategies-

Committee.aspx   
3 http://www.inrs.fr/accueil/produits/mediatheque/doc/outils.html?refINRS=outil13  
4 https://www.easinc.co/ihda-software/  
5 https://www.bsoh.be/?q=en/node/89  
6 http://www.tsac.nl/hyginist.html  
7 https://www.epa.gov/land-research/proucl-software  

https://www.aiha.org/get-involved/VolunteerGroups/Pages/Exposure-Assessment-Strategies-Committee.aspx
https://www.aiha.org/get-involved/VolunteerGroups/Pages/Exposure-Assessment-Strategies-Committee.aspx
http://www.inrs.fr/accueil/produits/mediatheque/doc/outils.html?refINRS=outil13
https://www.easinc.co/ihda-software/
https://www.bsoh.be/?q=en/node/89
http://www.tsac.nl/hyginist.html
https://www.epa.gov/land-research/proucl-software
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reimport the results. This signifies a need to provide a hygiene statistics toolbox that would 
facilitate the process of programming necessary calculations into existing systems. 

1.10 Summary of knowledge gaps and needs 

Considerable spatial and temporal variability observed in levels of exposure has historically 
represented an important challenge to their interpretation. A consensus framework now exists 
for their analysis based on the lognormal distribution. These developments, although permitting 
a better assessment of risk compared to historical approaches, have not been widely adopted 
by industrial hygiene practitioners. Indeed, they involve statistical notions not usually taught in 
traditional training programs and require calculations not usually feasible with simple common 
tools (e.g., calculators or spreadsheets). The few specific tools currently available are an 
important step forward but they do not yet present a comprehensive answer to practitioners’ 
needs. Moreover, available tools are standalone, and are not easily amenable to integration 
within an existing data management structure. Finally, Bayesian methods represent a very 
promising approach to data interpretation in industrial hygiene but are currently not accessible 
to most practitioners. In conclusion, to support the adoption in the field of modern guidelines for 
industrial hygiene data interpretation and to improve chemical risk assessment practice there is 
a significant need for better knowledge translation, and for accessible and comprehensive data 
analysis tools. 
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2. RESEARCH OBJECTIVES 

The WebExpo project aimed at improving transfer of current best practices in the interpretation 
of occupational exposure levels for risk assessment into the field of occupational hygiene.  
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3. METHODS 

3.1 Specific objective 1: Establishing current needs in calculations, 
documentation and risk communication 

Based on the review presented in section 1 it is possible to produce a tentative list of core 
features that should be minimally present in a comprehensive data interpretation tool: 

Metrics relevant to group assessment of overexposure: 
• Exceedance fraction 
• 95th percentile 
• Arithmetic mean 

Metrics relevant to individual assessment of overexposure: 
• Between- and within-worker components of variability 
• Within-worker correlation 
• R ratio 
• Probability that a worker’s individual exceedance fraction is too high 
• Probability that a worker’s individual 95th percentile is too high 
• Probability that a worker’s individual arithmetic mean is too high 

Uncertainty management: 
• Calculation of confidence intervals for all metrics above. 
• Treatment of non-detects 
• Treatment of measurement error 

We validated and sought to possibly extend this list through obtaining feedback from 
stakeholders in the form of two committees. 

First, we formed a stakeholder committee made of industrial hygiene practitioners from Quebec. 
The committee included nine stakeholders: an industrial hygienist (IH) from a consulting 
company, two IHs from private companies, an IH from IRSST, an IH from the Public health 
network in occupational health (RSPSAT, Réseau de santé publique en santé au travail), an 
industrial hygiene technician and an occupational physician from the RSPSAT. The stakeholder 
committee convened twice for a half-day at the beginning and at the end of the project. The 
main goal of this committee was to provide feedback and suggestions from the standpoints of 
Quebec practitioners about needs and obstacles to the use of current data interpretation 
guidelines. 

Second, we created an expert committee with Canadian and international experts in the field of 
industrial hygiene statistics, with academic and private affiliations (Table A1 in Appendix A). The 
expert committee convened once for two days at the beginning of the project. The main goal of 
this committee was to provide feedback and suggestions on methodological choices for the 
calculation and features that would end up being included in the algorithms. 

Both committees helped define the final list of functionalities and calculations covered in 
WebExpo. 
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3.2 Specific objective 2: Creation of a library of computer code 

This task can be separated into two components. The first one involved setting up theoretical 
Bayesian solutions to the list of estimation problems finalized in 3.1. As will be detailed in 
section 3.2.1, this component mainly consisted in transposing to the field of IH statistical 
techniques that are already available in other domains. The second component involved 
implementing the calculations in the form of algorithms to ultimately facilitate their use by a large 
audience, outside of users of specialized statistical packages. As described in section 3.2.2, this 
required first implementing solutions in the R statistical package, and then translating the R 
code into languages used for programming web or standalone applications. 

3.2.1 Setting Bayesian models for the estimation problems defined in 3.1 

The Bayesian models for the WebExpo project were set up based on already published IH 
literature, available techniques already described in other fields, as well as the expertise of the 
McGill biostatistics team members (Lawrence Joseph and Patrick Bélisle), who were asked to 
detail their underlying mathematical basis. We used the models presented in Banerjee et al. (S. 
Banerjee et al., 2014) and McNally et al. (McNally et al., 2014), respectively, as a starting point 
for the group and variance component models, which we extended to include censoring, 
measurement error, and multiple prior types. 

The models in the WebExpo project were anticipated to be too complex and for which the 
posterior distributions could not be easily written analytically in closed form, i.e., there would be 
no deterministic equation allowing the estimation. As a consequence, Markov Chain Monte 
Carlo (MCMC) simulation would be necessary to obtain samples from the posterior distributions 
from which inferences are made. As an example, let’s consider estimating the mean µ of a 
normal distribution with standard deviation σ. After setting up priors for the unknown parameters 
and collecting a sample of observations, a typical MCMC output would include, for example, 
10 000 random values from the posterior distribution for µ. The point estimate for µ would be the 
median of these 10 000 values, and the 2.5th and 97.5th percentiles of the 10 000 values would 
constitute a 95% equal-tailed credible interval (95% CrI). Bayesian credible intervals are 
interpreted as direct probabilistic statements: the probability that µ is in the interval is 95%, 
given the current and past information, as represented by the prior and likelihood function used. 

One feature of Bayesian data analysis especially useful in our project is the fact that once 
posterior samples for the model parameters are available, posterior samples for any function 
derived from them are also immediately available. In the example above, let’s assume we 
obtained 10 000 values for µ and 10 000 values for σ from their joint posterior distribution. It is 
then straightforward to obtain 10 000 values for the coefficient of variation of the distribution, 
simply by calculating CV=σ/µ from each pair of samples of µ and σ. The output of the Bayesian 
models being estimates of basic distributional parameters (e.g., geometric mean and standard 
deviation), we also developed equations to transform the MCMC chains for these estimates into 
the relevant metrics selected in 3.1 (e.g., 95th percentile). This was mostly based on existing 
guidelines and industrial hygiene publications (see section 1 for references). Figure 1 Illustrates 
the Bayesian estimation process as implemented in WebExpo. 
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Figure 1. Illustration of the Bayesian analysis framework in WebExpo. 

3.2.2 Creation of the library of programming codes 

3.2.2.1 General approach 

Markov Chain Monte Carlo methods are computer intensive and Bayesian calculations are 
usually performed with specialized softwares such as Openbugs8, Winbugs9, JAGS10, or 
STAN11. The code for these applications is usually reported in research papers such as 
Banerjee et al., (2014). However, these programs are too complex for day-to-day use by IH 
practitioners. Hence implementing the WebExpo algorithm using the above-mentioned software 
would not ultimately facilitate the practitioners’ calculation needs. 

We therefore opted for first implementing the WebExpo Bayesian models using a tailor-made 
MCMC engine written in the free R statistical language (R Core Team, 2014) using basic 
calculus functions, that would be amenable to subsequent translation into programming 
languages traditionally used to create practical tools and free of any licensing issue. 

The first step in implementing the theoretical algorithms involved creating a library of R code, 
including initial data formatting, Bayesian calculation, and transformation of the Bayesian 
                                                
8 http://www.openbugs.net/w/FrontPage  
9 https://www.mrc-bsu.cam.ac.uk/software/bugs/the-bugs-project-winbugs/  
10 http://mcmc-jags.sourceforge.net/  
11 http://mc-stan.org/  

http://www.openbugs.net/w/FrontPage
https://www.mrc-bsu.cam.ac.uk/software/bugs/the-bugs-project-winbugs/
http://mcmc-jags.sourceforge.net/
http://mc-stan.org/
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functions output into relevant exposure metrics. This would create a library of R code to perform 
all the calculations in the WebExpo project. However, running this code would still require some 
expertise in R, as well as a local version of R on the user’s computer. 

The next step was therefore to translate this library into two computer programming languages, 
which facilitates running the corresponding routines in other computer environments without 
having to use statistical analysis packages, and which can be used by programmers to create 
applications. The first translation was into the web-programming language JavaScript12. This 
translation allows performing Bayesian calculations directly within a standard web environment 
(i.e., within one’s own web browser). The second translation was into the C# (C sharp) 
language13. C# is a prominent programming language used to create standalone applications. It 
allows the creation of downloadable software capable of performing all the routines created in 
the project, as well as their integration into existing data management applications. 

Finally, the calculations were also coded in R using calls to the JAGS application, a third-party 
Bayesian engine allowing rapid MCMC simulation for a wide array of models, through the 
RJAGS package14. This set of R+JAGS functions was created to allow R users to perform the 
calculations described in this report with optimal efficiency, as the pure R models are noticeably 
slower than their R+JAGS counterpart, especially in the case of measurement error. 

3.2.2.2 Quality control 

The theory behind the Bayesian models in the WebExpo project is based on published 
literature, with relatively simple models (single distribution estimation or variance components 
model). Therefore, we did not attempt to perform simulations, e.g., to verify that our procedure 
yielded accurate estimates of the geometric mean, or that the credible intervals’ coverage was 
exact. Similarly, the performance of Bayesian treatment of censored data has already been 
evaluated by others. The theoretical models and R functions were written by two experienced 
Bayesian statisticians, Lawrence Joseph and Patrick Bélisle. 

Our main concern for this project was that the implementation of MCMC algorithms, which rely 
on random number generation, should provide similar results across different calculation 
platforms (R, R+JAGS, C#, JavaScript). Even within a single platform, the randomness 
associated with MCMC implies that running the same analysis multiple times will yield slightly 
variable results. When the pure R code was translated into C# and JavaScript, differences 
between platforms could appear because basic mathematical functions are written differently 
across platforms, or because the random generation mechanisms or rounding procedures are 
different. For differences between R and R+RJAGS, although the pure R and JAGS scripts start 
from the same theoretical model, the actual MCMC algorithms are different. 

During the translation from pure R to C# and JavaScript, we aimed to ensure that the 
differences between platforms were minimal, and regular communication took place between 
the R and C# or JavaScript coders, especially whenever notable differences were observed 
across platforms. In practice, standard samples (of varying size, distribution, degree of 
censorship, variability) were analysed using all platforms and the results were compared. 
                                                
12 https://en.wikipedia.org/wiki/JavaScript  
13 https://en.wikipedia.org/wiki/C_Sharp_(programming_language)  
14 https://cran.r-project.org/web/packages/rjags/index.html  

https://en.wikipedia.org/wiki/JavaScript
https://en.wikipedia.org/wiki/C_Sharp_(programming_language)
https://cran.r-project.org/web/packages/rjags/index.html
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It was possible to use the same random number generator in C# and in R, which allowed the 
comparison of the MCMC chains for each standard sample, at each iteration between R and 
C#, and descriptive statistics of the differences across iterations were used to measure 
agreement. 

For JavaScript, while the same procedure would have been possible in principle, we rather 
compared quantiles of the posterior samples, namely the 1st, 2.5th, 5th, 25th, 50th, 75th, 95th 97.5th 
and 99th percentiles of the MCMC chains for all unknown parameters. This procedure was 
simpler to implement and less time consuming than the iteration-by-iteration approach. 

The procedure was simplified to compare R with R+JAGS, as there was less concern about 
inter-platform differences (both calculations are implemented within R). For each estimation 
procedure, one standard sample was submitted 50 times to the R and R+RJAGS functions, and 
we computed the ranges across these repetitions of the point estimates and credible limits for 
the unknown parameters. The ranges were then compared between R and RJAGS to make 
sure they were comparable, given the variability observed within each approach. 

3.3 Specific objective 3: Creation of prototype tools 

The JavaScript and C# libraries described in stage 3.2 were used to create prototype data 
interpretation tools in both langages. These prototypes, also open source, aim at showcasing 
the calculations allowed by the algorithms, with a minimal user interface but showing essential 
numerical results. They both contain a data entry interface where values must be entered for all 
parameters necessary to the functions alongside the dataset to be analysed. Outputs include 
the MCMC chains themselves, as well as exposure metric point estimates and credible 
intervals. No graphical illustration or interpretation of the results is provided. The two prototypes 
will serve as starting points for the future creation of an IRSST-specific fully-fledged practical 
data interpretation tool. 
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4. RESULTS

4.1 Specific objective 1: Establishing current needs in calculations, 
documentation and risk communication 

The literature review presented in section 1 identified two main avenues, which correspond to 
two different statistical models, for IH data interpretation. The first, hereafter called “SEG 
analysis”, corresponds to situations when a set of measurements are available for a group of 
similarly exposed workers (i.e., workers assumed to share the same exposure distribution), or 
for a single worker. In that case, the analysis involves estimating parameters for a single 
exposure distribution, from which the exposure metrics such as exceedance fraction can be 
derived. The second type of analysis, hereafter labelled “between-worker differences”, can be 
performed when repeated measurements are available for some workers in a group. It allows 
separating total variability into between- and within-worker components and evaluates the 
homogeneity of exposure in the group and whether some individual workers might be at risk 
despite acceptable group exposure. As this dichotomy is reflected throughout the results 
section, we felt it necessary to introduce it here. 

4.1.1 Feedback from the Quebec practitioners committee 

A majority of the comments by this committee pertained to recommendations around the design 
of practical IH calculation tools rather than the actual numerical estimation procedures or 
relevant exposure metrics. These remarks will be very useful in the next phase of this project for 
the creation of a tool from the prototypes created in this project. However, they are not relevant 
for the selection and the algorithmic implementation of calculation routines, and so we did not 
include the full meeting notes here. We will, however, mention that the practitioners’ committee, 
in agreement with the experts’ committee (see below), underlined the importance of facilitating 
risk communication, either through creating easy to understand numerical results, through 
graphical tools, or through comprehensive documentation accessible to non-specialists. 

4.1.2 Feedback from the international expert committee 

The final notes of the 2-day meeting held by the expert committee are available in Appendix A. 
During the meeting, after a general introduction, attendees were presented with the proposed 
core list of metrics described in 3.1 for discussion. Additional points scheduled for discussion 
included treatment of non-detects, measurement error, the use of informed Bayesian priors in 
the calculations, and risk communication. Attendees were free to add any other topic judged 
relevant. 

For both the SEG and between-worker difference analyses, the committee confirmed interest in 
estimating all metrics in the initial proposal. 

Treatment of censored data was deemed essential but could be restricted to left-censored data 
(as right and interval censorship occur more rarely in IH measurement data). 

Including some form of measurement error in the calculations was deemed of interest, but 
rather as an optional feature, as it was felt that most situations would correspond to a negligible 
impact. 
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The committee expressed little interest in formal hypothesis tests to evaluate the adequacy of 
the lognormal distribution. Hence it appears that below 30-50 data, which would be the majority 
of situations in IH data analysis, hypothesis tests, or even graphical assessment such as the Q-
Q plot, do not provide useful information on distributional shape. 

Finally, the committee underlined the importance of creating numerical outputs which would be 
accessible to non-specialists, and, in particular, which would adequately convey the uncertainty 
associated with the analyses. 

4.1.3 Creation of a probabilistic data interpretation framework 

Both committees’ statements on the importance of facilitating communication of uncertainty led 
us to set up an alternative to only using confidence intervals. This framework, described below, 
basically relies on providing an answer to the question: “What is the probability that this situation 
corresponds to overexposure?” 

Appraisal of uncertainty has traditionally been tackled with confidence intervals and hypothesis 
tests. For example, to answer the question “Even if the point estimate of the 95th percentile 
(P95) for a group of workers is < OEL, how sure can we be that the true value is indeed 
< OEL?” A typical statistical test for this question would state a null hypothesis such as “the true 
95th percentile is above the OEL”. One would then perform the test and hope to reject the null 
hypothesis with a small type I error. Alternatively, one would calculate an upper confidence limit 
and hope that it is lower than the OEL. A common feature of these procedures is that their 
outcome, based on a pre-selected degree of confidence, is binary. For example, in the case of 
calculating a 90% upper confidence limit on the 95th percentile, either this limit is lower than the 
OEL, and we can then be 90% sure that the true value is < OEL, or it is higher, and the 
conclusion is : “we can’t demonstrate with 90% confidence that the true 95th percentile is 
< OEL”. 

An alternative and more direct statement about uncertainty could be made. For example, 
calculating the probability that the true 95th percentile is below the OEL, which should be high 
(>90% in the above example), or, conversely, the probability that the true 95th percentile is 
above the OEL, which should be low (<10% in the example above). These statements are both 
informative, and easy to convey to workers or employers as they provide direct answers to the 
question “What are the chances that exposure is too high?” 

Bayesian analysis naturally permits such direct statements about the degree of uncertainty in 
the conclusions that can be drawn from data. The probabilistic framework implemented in the 
WebExpo project involves two stages leading to an estimate of the probability that exposure is 
not adequately controlled, which we call probability of overexposure, or overexposure risk. 
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Stage 1 – Definition of overexposure: which characteristic of the exposure distribution 
corresponds to an unacceptable situation? 

As an example, for the SEG analysis, the review presented in section 1 suggested three 
different definitions of overexposure: 

Exceedance fraction ≥ 5% 
95th percentile ≥ OEL 
Arithmetic mean ≥ OEL 

Stage 2 – Analysis of the observed data using the Bayesian models. 

In addition to parameter point estimates with credible intervals, the probability that the 
overexposure criterion is met is estimated from the posterior distribution samples, e.g., the 
probability that true 95th percentile is ≥ OEL given the data. This quantity, overexposure risk, 
can be used as a direct input for exposure management: is overexposure risk low enough that it 
is possible to consider exposure well controlled, or is it high enough that some action should be 
undertaken (e.g., consider implementing exposure controls)? 

Although overexposure risk provides complete information about uncertainty, risk managers 
often prefer to receive results in the form of a recommendation: does this situation require an 
intervention, or not? Providing such a recommendation requires setting a threshold for 
overexposure risk: the situation can then be declared either adequately controlled if 
overexposure risk is lower than the selected value, or poorly controlled otherwise. That value is 
called the overexposure risk threshold. The widely accepted value for this threshold is 5%, 
where the overexposure risk should be lower than 5% to declare a situation acceptable (Jahn 
et al., 2015). 

To illustrate the correspondence between this and more traditional statements of uncertainty, 
we shall use the example of P95 ≥ OEL as the overexposure criterion. An overexposure risk 
below 5% is equivalent to “the chances that the true 95th percentile is above the OEL are below 
5%”. This means that we are at least 95% certain that the 95th percentile is below the OEL. 
Finally, this is equivalent to “the 95% upper confidence limit for the 95th percentile is below the 
OEL” (a more traditional statement). The current British-Dutch and European guidelines, as well 
as the French regulation, recommend comparing the 70% upper confidence limit for the 
exceedance fraction to 5%, which is equivalent to a 30% overexposure risk threshold with the 
overexposure criterion : “exceedance fraction ≥5%” (BOHS-NVvA, 2011; CEN, 2018; T. Ogden 
& Lavoué, 2012; République Française, 2009). Although the WebExpo algorithms do not 
perform the actual comparison of overexposure risk with a chosen threshold, such a comparison 
is trivial to perform using the provided overexposure risk value. Figure 2 below illustrates the 
correspondence between the traditional use of confidence/credible limits and overexposure risk. 

The uncertainty analysis involving calculation of between- and within-worker variabilities has an 
added layer of complexity as such analyses yield estimates of the probability of individual 
overexposure, i.e., the probability that a random worker would have an unacceptable individual 
exposure distribution. A threshold has been proposed, i.e., probability of individual 
overexposure should be <20% (BOHS-NVvA, 2011). However, as this probability is estimated, it 
is uncertain. Therefore, instead of only comparing the point estimate of the probability of 
individual overexposure to 20%, one can evaluate the chances that the true value is ≥20%, i.e., 
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the chances that an intervention would be required. A typical example of output would be “Given 
the data, we estimate that the probability of individual overexposure (overexposure defined as 
P95 > OEL) is 12% (90% CrI 6-50); the chances that the true value is above the threshold of 
20% are 25%. 

Figure 2. Illustration of the correspondence between overexposure risk and credible 
limits for the 95th percentile. 

4.1.4 Final list of calculations in the WebExpo project 

Table 1 presents a glossary of terms and metrics used in the WebExpo project. Table 2 
presents the list of metrics that were selected for inclusion, based on the initial review and 
feedback from the committees. 

The reader will note that Table 2 does not include probability of individual overexposure 
expressed using overexposure defined by exceedance fraction > exceedance threshold. This is 
because this quantity is equal to Pind.percentile, given the selected percentile corresponds to 
the exceedance threshold (in default values: 95th percentile/5% exceedance threshold). 
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Table 1. Glossary of terms 

Exceedance 
fraction 

Proportion of exposure levels in the population of interest that are 
above the exposure limit. Equivalently, probability for a single random 
exposure value to be above the OEL. 

95th percentile The 95th percentile of a distribution is defined as the value below 
which lies 95% of the distribution. 

Overexposure Characteristic of an exposure distribution that is unacceptable, 
i.e., which would trigger preventive action.

Exceedance 
threshold 

Proportion of exposure levels over the OEL used as a threshold to 
define overexposure (traditionally 5%).  

Critical 
percentile 

Percentile of the exposure distribution that will be compared to the 
OEL to evaluate overexposure (traditionally 95th percentile). 

Overexposure 
risk 

Probability that the criteria used to define overexposure is met 
(e.g., 95th percentile ≥ OEL). Practically: probability of an 
unacceptable exposure situation. 

Overexposure 
risk threshold 

Maximum allowable overexposure risk. This value, chosen a priori by 
the user, is used to create a dichotomy between “adequately 
controlled” and “poorly controlled” based on the overexposure risk. A 
traditional value used in the field of statistics would be 5%. The 
European guideline OEL compliance definition is equivalent to an 
overexposure risk threshold of 30%. 

Probability of 
individual 
overexposure 

Probability that a random worker within a group would have their 
individual exposure distribution corresponding to overexposure 
(e.g., probability that a random worker within a group has his 
individual 95th percentile above the OEL). Can also be stated as: 
Proportion of workers with their individual exposure distribution 
corresponding to overexposure. 

Credible 
interval 

While not formally equivalent, Bayesian credible intervals are usually 
interpreted in a similar way as the more traditional confidence 
intervals. 

R ratio 
R ratio has been defined by Rappaport et al. as the ratio of the 97.5th 
percentile of the distribution of workers' individual arithmetic mean 
divided by the 2.5th percentile of the same distribution.  

R difference 

Defined by adapting the R ratio to the normal distribution. Difference 
between the 97.5th percentile of the distribution of workers' individual 
arithmetic means minus the 2.5th percentile of the same distribution, 
expressed as a percentage of the group arithmetic mean. 
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Table 2. Exposure metrics calculated for the lognormal distribution in the WebExpo 
project 

SEG analysis 
Distributional parameter estimates (point estimate and credible intervals)  
Geometric mean  
Geometric standard deviation  
Exceedance fraction of the OEL  
Percentile of the exposure distribution (i.e., critical percentile, default 95%) 
Arithmetic mean of the exposure distribution 

Decision on Exposure Acceptability (overexposure risk) 
Probability that exceedance fraction ≥ exceedance threshold (default 5%) 
Probability that critical percentile (default 95%) ≥ OEL 
Probability that arithmetic mean ≥ OEL 

Between-worker differences* 
Distributional parameter estimates (point estimate and credible intervals) 
Group geometric mean 
Within-worker geometric standard deviation 
Between-worker geometric standard deviation 
Within-worker correlation coefficient (rho) 
Probability that rho is ≥ threshold (Prob.rho.overX) 
R ratio (R.ratio) 
Probability that R is ≥ 2 (Prob.R.over2, threshold to define heterogenous groups in Kromhout et al., 1993) 
Probability that R is ≥ 10 (Prob.R.over10, threshold to define very heterogenous groups in Kromhout et al., 
1993) 

Parameters quantifying the possibility that some workers are overexposed (probability of individual 
overexposure) 
Proportion of workers with their individual critical percentile ≥ OEL (Prob.ind.overexpo.perc) 
Proportion of workers with their individual arithmetic mean ≥ OEL (Prob.ind.overexpo.am) 
Probability that the true value for Prob.ind.overexpo.perc is above a threshold 
(Prob.ind.overexpo.perc.overX, default 20%) 
Probability that the true value for Prob.ind.overexpo.am is above a threshold 
(Prob.ind.overexpo.am.overX, default 20%) 
Customizable parameters 
Probability for credible intervals (default 90%) 
Exceedance threshold (default 5%)  
Critical percentile (default 95%) 
Threshold for the within-worker correlation coefficient (default 0.2)  
Coverage of the population for the R ratio (default 80%) 
Threshold for the probability of individual overexposure (default 20%) 
* In addition: for any individual worker: all metrics from the SEG analysis
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Finally, while estimating the lognormal probability distribution is at the heart of industrial hygiene 
data interpretation, the normal distribution is also used in some cases (e.g., while chemical 
exposures, the focus of this report, most often follow the lognormal model, noise exposure 
levels expressed in decibels are usually normal). Moreover, both distributions are closely 
related, since if X follows a normal distribution with GM and GSD, Y=ln(X) follows a normal 
distribution with mean ln(GM) and standard deviation ln(GSD). For that reason, all Bayesian 
models were straightforward to adapt to the normal case, and therefore have the option to 
analyse the data either as lognormally (the default option) or as normally distributed. In the 
following sections, the main focus is on the lognormal model, but a subsection shortly describes 
the normal option and its particularities. Results specifically associated with the normal models 
are presented in Appendix C.  Table C1 in Appendix C summarizes the metrics calculated in 
WebExpo for the normal model. 

4.2 Specific objective 2: Creation of a library of computer code 

Detailed mathematical presentation of the models and MCMC algorithms set up by the McGill 
team is available in Appendix B. 

4.2.1 Bayesian models created in WebExpo - SEG analysis 

The main assumption underpinning this model is that the exposure regimen studied is well 
represented by a lognormal distribution, and that a representative sample of that distribution has 
been obtained. 

Let X be the random variable representing exposure levels. 

Let Y be defined as Y=ln(X). Y therefore corresponds to the log transformed exposure levels. 

Since X follows a lognormal distribution, Y follows a normal distribution, that can be expressed 
as Y ~ N(µ,σ). 

The geometric mean of the exposure distribution is defined by GM=exp(µ). 

The geometric standard deviation is defined by GSD=exp(σ). 

µ and σ represent the unknown parameters of the model. 

4.2.1.1 Definition of prior distributions 

As µ and σ are the parameters of interest in this model, we needed to set up prior distributions 
for both parameters.  

For our primary model [SEG.informedvar, section 3 of Appendix B], we selected a weakly 
informative prior distribution for µ, in the form of a bounded uniform distribution as described, 
e.g., in Huynh et al. or Banerjee et al. (S. Banerjee et al., 2014; Huynh et al., 2016). For σ, we
took inspiration from the model described by McNally et al. (McNally et al., 2014), in which they
used the population of values observed in a dataset presented by Kromhout et al. (Kromhout
et al., 1993) and Rappaport et al. (Rappaport et al., 1993). The authors described variability
estimates for close to 200 exposure groups. From Table A1 in Kromhout et al. we tabulated 165
values of σ. Graphical assessment suggested a lognormal shape for the distribution of these
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values. Fitting the data to a lognormal distribution yields a GM of 0.84 for σ (which corresponds 
to a GSD of 2.32 for exposure levels), and a GSD of 1.87 (this quantity expresses variability in 
the sigma values, not in exposure levels). This distribution corresponds to 95% of exposure 
level GSD values between 1.3 and 17.6. Seventy percent of the distribution is comprised 
between 1.5 and 4.5. The prior for variability in the [SEG.informedvar] model is therefore 
expressed as a lognormal distribution for the log-transformed GSD of the exposure distribution. 
The default values are those above, but can be user-specified. 

This choice of prior keeps the level of prior information very low for the geometric mean, but 
somewhat informative for variability based on historical data. With flexibility in mind, we added 
two additional choices of priors for this model: 

1- [SEG.uninformative, section 2 of Appendix B]: This model has a uniform prior for σ as well
as µ, with the ranges selected by the user. By selecting wide ranges, the model becomes
uninformative in practice.

2- [SEG.riskband, section 5 of Appendix B]: This model expands the proposition by Hewett
et al., where the prior information involves setting upper and lower bounds for σ as well as
µ, but also assigning probabilities for the 95th percentile of the exposure management
bands defined by AIHA (Jahn et al., 2015). These bands are defined by: <0.01*OEL,
[0.01*OEL-0.1*OEL], [0.1*OEL-0.5*OEL], [0.5*OEL-OEL], and ≥ OEL. The last band
corresponds to unacceptable exposure. With this prior, the user has to enter a probability
for each of these categories, summing to one. Setting all five probabilities to 0.2
corresponds to an uninformative prior (inasmuch as the ranges for µ and σ are reasonably
wide), while assigning a high probability to one of the bands will render the prior
increasingly informative. Assignment of probabilities can be based on expert judgment,
mathematical emission models or other datasets (Arnold, Stenzel, Drolet, &
Ramachandran, 2016; Jayjock, Chaisson, Franklin, Arnold, & Price, 2009; P. Logan et al.,
2009; P. W. Logan et al., 2011). Aiming at flexibility, we expanded Hewett et al.’s proposal
to a customizable number of bands and band limits.

In addition, we were interested in allowing users to inform calculations using other relevant data, 
which would be available in the form of summary parameters (i.e., mean, standard deviation 
and sample size). Quick et al. described such a prior in the Annals of Occupational Hygiene 
after the WebExpo project had started, so incorporating their proposal was not possible without 
additional resources (Quick et al., 2017). However we proposed a modification of the 
[SEG.informedvar] model which would create similar results. The mathematics of the proposal is 
described in Appendix B. In essence the calculations are equivalent to the user submitting to the 
[SEG.informedvar] model a dataset that would include all data, current observations plus the 
additional summarised dataset. Users selecting this option have to provide mean (in the same 
scale as µ), standard deviation (in the same scale as σ), and sample size. The corresponding 
model is called [SEG.past.data]. 

4.2.1.2 Censored data analysis 

One way to model censored data in Bayesian analysis is to treat them as missing data that are 
constrained to fall in the censored range of the distribution (Gelman, 2013). Hence, a left-
censored data below the level of quantitation (< LOQ) is treated as a missing observation from 
the part of the distribution that is below the LOQ. At each iteration of the MCMC process, the 
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missing values are imputed with the corresponding constraint. This constraint influences the 
posterior distribution of the mean and standard deviation estimated by the model. When the 
priors have low information, the procedure is close to the frequentist maximum likelihood. We 
implemented this approach for left-censored, interval-censored, and right-censored data (the 
last two cases, although not prioritary according to the expert group, are straightforward 
extensions of the first). In addition, the censoring points can be specific to each observation 
(i.e., multiple LOQ values are permitted). 

4.2.1.3 Measurement error 

4.2.1.3.1 Measurement error expressed as a standard deviation 

The classical measurement error model for a measured quantity would typically be expressed 
as the following: 

Observed_X=True_X + error 

Assuming no bias but only random fluctuations around the true value, the traditional model for 
the “error” quantity is a normal distribution with mean zero and a fixed, potentially unknown 
standard error σe.This measurement error structure was added as an option in the SEG analysis 
models. 

The Bayesian model would therefore be defined as follows: 

Observed_X ~ N(True_X,  σe) (1) 

and with True_Y=ln(True_X) 

True_Y ~ N(µ,σ) (2) 

σe, is treated as unknown with a bounded uniform prior distribution. If σe is assumed known, the 
user can set the lower and upper bounds as equal. 

In practice, the actual mathematical statement of the model in Appendix B is slightly different 
from above. Hence, as the true values are assumed to follow a lognormal model, they are 
strictly positive. However, equation 1 may lead to negative values if the standard deviation is 
large compared to the true value. As a consequence, the normal distribution defining the 
observed value as a function of the true value is truncated so that only positive observed values 
can be generated (see section 6.1.1 of Appendix B). 

4.2.1.3.2 Measurement error expressed as coefficient of variation 

As mentioned previously, it is common in industrial hygiene to express measurement error in 
terms of CV, i.e., the error is proportional to the exposure level. Typical CVs range from a few 
percents for an 8 h time weighted average value based on the chemical analysis of an 
adsorbent tube to ~30% for instantaneous colorimetric detector tubes. A constant CV across a 
set of measurements implies a different standard deviation for each measurement. Such a 
model was also created for WebExpo and represents a second measurement error treatment 
option in WebExpo. 
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Observed_X ~ N(True_X,  CVe*True_X )  (3) 

with CVe the coefficient of variation expressing measurement error, 

and with True_Y=ln(True_X) 

True_Y ~ N(µ,σ) (4) 

In the WebExpo models, as for σe, CVe is treated as unknown with a bounded uniform prior 
distribution. If CVe is assumed known without uncertainty, the user can set the lower and upper 
bounds as equal. 

4.2.1.4 Modification of the models for the normal distribution 

When the option for the normal distribution is selected, there is no prior log-transformation of the 
observations. Therefore the parameters µ and σ are directly the mean and standard deviation of 
the underlying distribution. 

Although the normal model accommodates negative values, the WebExpo model for the normal 
distribution is restricted to positive values. Hence, as the measurement error can be expressed 
as a CV, negative values of X would imply negative values for the standard deviation of the 
error term. Hence users interested in fitting data involving negative or near 0 values should 
transform their data by adding a positive constant prior to analysis. 

4.2.1.5 Interpretation of the Bayesian model outputs 

As mentioned in section 4.1, the typical output of Bayesian analysis estimated through MCMC is 
a large sample from the joint posterior distribution of the unknown parameters, from which all 
inferences are made. Thus in the case of the SEG analysis, the raw output of the algorithms 
available to users is, e.g., 25 000 µ/σ couples. From these, we applied a number of equations to 
estimate the metrics described in section 4.1.4. 

Figure 3 illustrates the data process flow for the analysis of the lognormal distribution. Inputs 
include actual observations, occupational exposure limit, parameters specific to the Bayesian 
model (choice and specification of prior, MCMC parameters, choice and specification of 
measurement error) as well as parameters used to interpret the samples from the posterior 
distribution. For the lognormal model, we opted to have the observations divided by the OEL 
prior to being processed by the Bayesian routines. This standardization ensures that the 
quantities processed by the Bayesian analyses, whatever the initial unit or state, will be in a 
range approximately centered on 1. This uniformity allows proposing lower and upper bounds 
for µ that are adequate for most situations. 
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Figure 3. Data processing flow for the SEG analyses – Lognormal distribution. 

The output metrics include the geometric mean, the geometric standard deviation, the 
exceedance fraction of the OEL, any percentile of the distribution (default 95%), as well as the 
arithmetic mean, obtained from the equations below. 

Geometric mean of the exposure distribution: 

𝑮𝑮𝑮𝑮 = 𝐞𝐞𝐱𝐱𝐱𝐱 (𝝁𝝁) (5) 

Geometric standard deviation of the exposure distribution: 

𝑮𝑮𝑮𝑮𝑮𝑮 = 𝐞𝐞𝐞𝐞𝐞𝐞 (𝝈𝝈) (6) 

Xth percentile of the exposure distribution: 

𝑷𝑷𝑷𝑷 = 𝐞𝐞𝐞𝐞𝐞𝐞 �𝝁𝝁 + 𝚽𝚽−𝟏𝟏(𝑿𝑿) ∗ 𝝈𝝈� (7) 

where Φ−1 is the inverse cumulative distribution function of the standard normal distribution. 
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Exceedance fraction of the OEL: 

𝑭𝑭(%) = 𝟏𝟏𝟏𝟏𝟏𝟏 ∗ �𝟏𝟏 −𝚽𝚽�
𝐥𝐥𝐥𝐥 (𝐎𝐎𝐎𝐎𝐎𝐎) − 𝛍𝛍

𝝈𝝈
�� (8) 

where Φ is the cumulative distribution function of the standard normal distribution. 

Arithmetic mean of the exposure distribution: 

𝑨𝑨𝑨𝑨 = 𝐞𝐞𝐞𝐞𝐞𝐞�𝝁𝝁 + 𝟎𝟎.𝟓𝟓 ∗ 𝝈𝝈𝟐𝟐� (9) 

Uncertainty around the previous metrics is characterised by calculating them for all joint values 
of µ and σ in the posterior sample. For example, equation 8, applied to the joint posterior 
sample for µ and σ, will yield 25 000 values of exceedance fraction, which represents our 
knowledge about this parameter, given the model, the prior, and the observations. These values 
define the uncertainty surrounding the estimation process. The point estimate for exceedance 
fraction will be the median of the 25 000 values, and, e.g., their 5th and 95th percentiles will form 
a 90% equal-tail credible interval. Uncertainty can also be expressed in the form of what we 
defined as overexposure risk in section 4.1.3: the proportion of the 25 000 posterior values over 
the threshold of 5% represents the probability that the true exceedance fraction is ≥5%. 

4.2.1.6 Examples 

Let us illustrate the SEG analysis calculations using a hypothetical dataset coming from a 
known distribution, with geometric mean True_GM=30, and geometric standard deviation 
True_GSD=2. The true 95th percentile of this distribution is 84, and its true arithmetic mean is 
38. With an arbitrary OEL at 100, the actual exposure regimen would therefore be acceptable
according to current consensual overexposure definitions.

We will use a random sample of size nine (recommended in the recent European community 
guideline) from this true distribution to apply the Bayesian models created for WebExpo. These 
numbers might represent, for example, nine time-weighted averaged toluene concentrations 
measured for a SEG. 

24.7 / 64.1 / 13.8 / 43.7 / 19.9 / 133 / 32.1 / 15 / 53.7 

[sample.1 in Appendix E] 

For this example, we will first assume no measurement error and will run the calculations with 
the [SEG.informedvar] model. The raw output of the Bayesian calculations includes a sample of 
25 000 values from the joint posterior distribution of µ and σ, such that µ=ln(True_GM) and 
σ=ln(True_GSD). The model was run in practice using the R+JAGS algorithms (see 4.3), using 
the default parameters (see Appendix D). 

Figure 4 shows the histograms of the posterior samples of µ and σ. These histrograms reflect 
the knowledge we gained about µ and sigma given the data, the priors and the model. They 
represent our estimate of the uncertainty about these parameters. In this example, the most 
plausible values for µ are probably between 3 and 4 (although as seen on the histogram, more 
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extreme values are possible). The median of the 25 000 values of the posterior sample for µ in 
the histogram represents the point estimate for µ: 3.53. Plausible values for sigma would be 
between 0.5 and 1.5, with a point estimate of 0.78. 

Figure 4. Posterior samples for the log-transformed geometric mean and standard 
deviation output from the SEG.informedvar model (lognormal model). 

From the values illustrated in Figure 4, it is straightforward to apply equations 5-9 to obtain 
posterior samples for the various metrics of interest. Figure 5 below shows the posterior 
samples for the 95th percentile of the distribution (eq. 7) and the arithmetic mean of the 
distribution (eq. 9). 

Figure 5. Posterior sample for the 95th percentile and arithmetic mean, calculated 
from the output from the SEG.informedvar model (lognormal model). 

The histograms shown in Figure 5 illustrate the uncertainty surrounding the estimation of these 
metrics from a sample of size 9, since the values in the histograms cover a wide range. The 
notion of overexposure risk is well illustrated in Figure 5: using the criterion 95th percentile 
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≥ OEL (e.g., OEL=100 µg/m3) for overexposure, the probability (or risk) of overexposure is 
represented by the proportion of the area in the histogram to the right of the vertical bar showing 
the OEL, i.e., the proportion of values in the posterior sample of the 95th percentile that are 
above the OEL. 

Table 3 summarizes the results of the interpretation of the posterior samples, including point 
estimates and 90% credible intervals, as well as overexposure risk (95th percentile and AM), 
and the AIHA risk band probabilities, i.e., respective probabilities that the true 95th percentile (or 
AM) is <0.01*OEL, [0.01*OEL-0.1*OEL], [0.1*OEL-0.5*OEL], [0.5*OEL-OEL], and ≥ OEL. 

To illustrate the notion of point estimate and credible interval, Table 3 indicates that the most 
plausible value for GM is 34.2, with a 90% probability that the actual value is between 21.6 and 
54.5. Table 3 also indicates that the most plausible value for exceedance fraction is 8.29%, with 
a 90% probability that the actual value is between 1.46 and 26.5%, and a 71% probability that it 
is ≥5% (overexposure risk). In terms of the AIHA risk bands for the 95th percentile, while the 
point estimate is 122 compared to the OEL of 100, Table 3 shows that there is a 71% probability 
that the actual 95th percentile is >OEL (100 µg/m3), 29% chance that it is between 0.5*OEL 
(50 µg/m3) and OEL (100 µg/m3), and <1% probability that it is in the other categories. Thus, 
despite a true 95th percentile below the OEL, inference from the available sample suggests 
there is a high probability (71%) that the true value (which we know is < OEL) is above the OEL. 
This illustrates the difficulty to make conclusive inference based on limited sample size when 
the true situation is acceptable, but marginally so. Table 3 also illustrates the difference between 
overexposure being defined based on the 95th percentile (overexposure risk 71%) vs. the 
arithmetic mean (overexposure risk 3.7%). 

Table 3. Exposure metrics point estimates and credible intervals for an example of 
Bayesian calculation for the lognormal model 

Parameter Point estimates and 90% credible interval 
GM 34.2 [ 21.6 - 54.5 ] 

GSD 2.18 [ 1.72 - 3.37 ] 

Exceedance fraction (%) 8.29 [ 1.46 - 26.5 ] Overexposure risk: 71% 

95th percentile 122 [ 72.1 - 303 ] Overexposure risk: 71% 

AIHA band probabilities in % (95th percentile) 0 / 0 / 0.048 / 29 / 71 

Arithmetic mean 46.7 [ 30.4 - 91.6 ] Overexposure risk: 3.7% 

AIHA band probabilities in % (AM) 0 / 0 / 59 / 37 / 3.7 

In order to illustrate the influence of the choice of prior distribution, we analysed the same 
sample using the other WebExpo options for the prior information. We included the 
uninformative model, the riskband model (similar to the proposal by Banerjee et al., and Hewett 
et al.), as well as the past.data model. For the informative riskband model, we defined prior 
knowledge as a prior assessment from a hypothetical expert judging the situation likely 
acceptable albeit not by a great margin, therefore choosing the following prior probabilities for 
the AIHA bands: <0.01*OEL (10%), [0.01*OEL-0.1*OEL] (20%), [0.1*OEL-0.5*OEL] (50%), 
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[0.5*OEL-OEL] (10%), and ≥ OEL (10%). For the past.data model, we will consider the prior 
existence of a dataset of five measurements, with geometric mean 5 and geometric standard 
deviation 2.4, judged relevant for the current analysis. For these analyses, parameters other 
than those mentioned above were the default parameters described in Appendix D. Table 4 
shows the results. 

Table 4. Exposure metrics point estimates and credible intervals for 4 choices of 
prior distribution 

Parameter Informedvar Uninformative Past.data Riskband 

GM (90% Crl) 34.2 [ 21.7 - 54.1 ] 34.3 [ 20.9 - 56.8 ] 17.2 [ 9.91 - 29.7 ] 29.8 [ 19.1 - 46.1 ] 

GSD (90% Crl) 2.18 [ 1.73 - 3.38 ] 2.3 [ 1.75 - 4.15 ] 3.33 [ 2.49 - 5.45 ] 2 [ 1.66 - 3.19 ] 

Exceedance fraction 
(%) (90% Crl) 8.30 [ 1.51 - 26.3 ] 9.77 [ 1.76 - 30.3 ] 7.16 [ 1.81 - 19.7 ] 3.71 [ 0.872 - 21.2 ] 

95th percentile (90% 
Crl) 122 [ 72.8 - 302 ] 134 [ 74.9 - 418 ] 124 [ 64 - 342 ] 90.8 [ 65.6 - 247 ] 

Overexposure risk 
(%, P95) 71% 76% 69% 26% 

AM (90% Crl) 46.6 [ 30.7 - 91.3 ] 49.1 [ 31.2 - 118 ] 35.9 [ 20.2 - 90.4 ] 37.6 [ 27.3 - 76.6 ] 

Overexposure risk 
(%, AM) 3.7% 7.5% 3.7% 2.4% 

Table 4 illustrates the influence of different choices of prior distribution when the sample size is 
relatively small. While both weakly informative priors (informedvar and uninformative) yield 
similar (albeit not equal) results, both informative priors have a marked influence. Hence the 
past.data procedure, involving a dataset with lower levels than those in the sample, decreased 
the estimate of GM, while increasing the estimate for GSD (probably due to the discrepancy in 
levels between the two datasets). The combined decrease in GM and increase in GSD resulted 
overall in relatively little change in the exceedance fraction and 95th percentile, but caused a 
decrease in the arithmetic mean. The riskband prior, which represented lower exposures, pulled 
the estimates towards lower values, with a decrease in GM leading to lower 95th percentile, 
exceedance fraction, arithmetic mean, and associated overexposure risk values. 

In order to illustrate the impact of measurement error on the analysis of exposure 
measurements, we present the analysis of a sample coming from a known distribution. We first 
generated a sample of size 100 from a lognormal distribution with GM=60 and GSD=1.5 
[sample.2 in Appendix E]. Measurement error was added in the form of a random deviation from 
the true underlying exposure value, for each point, characterized by a coefficient of variation of 
30%. We then analysed this sample using three approaches: an analysis assuming no 
measurement error, an analysis assuming that measurement error is known to be 30%, and an 
analysis where measurement error is unknown but supposed between 15 and 45%. Table 5 
shows the result of this analysis. 
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Table 5. Exposure metrics point estimates and credible intervals in the presence of 

measurement error 

Parameter 
No measurement 

error (A) Known CV (30%) Unknown CV (15-45%) 

GM (90% Crl) 56.9 [ 52.2 - 61.9 ] 59.8 [ 54.8 - 65.1 ] 58.9 [ 53.7 - 64.3 ] 

GSD (90% Crl) 1.68 [ 1.59 - 1.79 ] 1.49 [ 1.39 - 1.62 ] 1.55 [ 1.4 - 1.7 ] 

Exceedance fraction (%) 
(90% Crl) 13.7 [ 9.62 - 18.8 ] 9.8 [ 5.27 - 15.8 ] 11.2 [ 5.82 - 17.1 ] 

95th percentile (90% Crl) 133 [ 118 - 153 ] 115 [ 101 - 135 ] 121 [ 103 - 142 ] 

Arithmetic mean (90% Crl) 65 [ 59.6 - 71.5 ] 64.8 [ 59.4 - 70.9 ] 64.8 [ 59.3 - 71 ] 
(A): The data actually contain measurement error; the column heading indicates the type of analysis that 
was applied to these data. 

Table 5 shows that not taking the measurement error into account caused little effect on the 
GM, while it caused an overestimation of the GSD. Overestimating GSD impacted the 
estimation of the upper tail of the distribution with an associated overestimation of the 
exceedance fraction and of the 95th percentile. The impact was lower for the arithmetic mean. It 
is noteworthy that the credible interval for GSD for the naïve analysis didn’t include the true 
value, as opposed to the two analyses including measurement error. Compared to the analysis 
assuming a known CV, assuming a CV known only within a range caused little effect for that 
example. 

4.2.2 Bayesian models created in WebExpo - Between-worker difference analysis 

The main assumption underpinning this model is that the exposure regimen within an exposure 
group is adequately represented by the following hierarchical structure: workers within their 
group have their personal exposure distribution adequately represented by a lognormal 
distribution. The workers’ distributions differ in their location (GM), but not in their variability. The 
collection of worker-specific GMs themselves follows a lognormal distribution. 

Let X be a random variable representing exposure levels. 

Let Y=ln(X) where Y then corresponds to the log -transformed exposure levels. 

Let yij be the value corresponding to the measurement taken on the jth day for the ith person. 

The one level hierarchical random effects model is written as: 
yij=µy+bi+eij 
 
for i=1,2,…,k workers on j=1,2,…,ni days 
 

µy is the group mean, bi is the random effect for worker i, and eij is the random deviation on the 
jth day from the ith worker’s mean µy+bi. 
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Under this random effect model, bi and eij are mutually independent and normally distributed 
with means of zero. The between-worker standard deviation (of bi) is σb, and the within-worker 
standard deviation (of eij) is σw. 

The group geometric mean is defined by GM=exp(µy). 

The between-worker geometric standard deviation is defined by GSDB=exp(σb). 

The within-worker geometric standard deviation is defined by GSDW=exp(σw). 

Any individual worker’s exposure distribution is defined by: 

GMi=exp(µy+bi) and 

GSDi=exp(σw). 

4.2.2.1 Definition of prior distributions 

For this model (described in section 4 of Appendix B), we needed to set up prior distribution for 
the three parameters µy, σb, and σw. 

For our primary analysis, we set up priors similar to the [SEG.informedvar] model described 
above. The prior information for µy is the same as for the SEG model, a uniform distribution 
bounded by -20 and 20. 

For the variability parameters, we used the same published data as for the [SEG.informedvar] 
model, but used the between- and within-worker components of variance presented in the 
Kromhout et al.’s paper, as opposed to total variability. Graphical assessment also suggested a 
lognormal shape for the distribution of between-worker (σb) and within-worker (σw) standard 
deviations. Fitting the data to lognormal distributions yielded the following parameters: 

For between-worker variability: 
GM of the lognormal distribution for σb : 0.415 
GSD of the lognormal distribution for σb : 2.18 
This distribution corresponds to 95% GSDB values between 1.1 and 6.7. Seventy percent of the 
distribution is comprised between 1.2 and 2.5. 

For within-worker variability: 
GM of the lognormal distribution for σw : 0.844 
GSD of the lognormal distribution for σw : 1.88 
This distribution corresponds to 95% GSDW values between 1.3 and 18.3. Seventy percent of 
the distribution is comprised between 1.6 and 5.1. 

This choice of prior keeps the level of prior information very low for the geometric mean, but 
somewhat informative for variability based on historical data. It is very similar to those described 
by McNally et al. (McNally et al., 2014). As in the case of the SEG analysis, the above 
distributional parameters for the priors are proposed default values, but can be user-selected. 
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We added one additional choice of prior for this model, where the prior distributions for σb and 
σw are uniform, with user-selected bounds. Large bounds would correspond to an uninformative 
Bayesian prior. 

4.2.2.2 Censored data analysis 

Censored data in the between-worker differences model is processed using the same approach 
described in 4.2.1.2. Multiple censoring points are permitted, and data can be left, right, or 
interval censored. The mathematics are detailed in Appendix B. 

4.2.2.3 Measurement error 

Measurement error for this model is treated the same was as described in 4.2.1.3 and detailed 
in Appendix B. 

4.2.2.4 Modification of the models for the normal distribution 

The changes to the Bayesian models for the normal instead of lognormal model for between-
worker differences analysis are the same as described in 4.2.1.4. 

4.2.2.5 Interpretation of the Bayesian model outputs 

In the case of the between-worker difference analysis, the raw output of the algorithms available 
to users is, e.g., 25 000 joint µy / σb / σw / bi (i=1 to k workers) values. From these, we applied 
several equations to estimate the metrics described in section 4.1.4 (see below). 

Figure 6 below illustrates the data process flow in the analysis of the lognormal distribution. 
Inputs include the actual observations with a worker identifier, the occupational exposure limit, 
parameters specific to the Bayesian model (choice and specification of prior, MCMC 
parameters, choice and specification of measurement error) as well as parameters used to 
interpret the samples from the posterior distribution. As for the SEG analysis of the lognormal 
model, we opted to have the observations divided by the OEL prior to the Bayesian routines. 

The following equations describe how the various metrics presented in 4.1.4 are calculated from 
the MCMC output. 

Group geometric mean: 

 𝑮𝑮𝑮𝑮𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈 = 𝐞𝐞𝐞𝐞𝐞𝐞 (𝝁𝝁𝒀𝒀) (10) 

Between-worker geometric standard deviation: 

  𝑮𝑮𝑮𝑮𝑮𝑮𝒃𝒃 = 𝐞𝐞𝐞𝐞𝐞𝐞(𝝈𝝈𝒃𝒃) (11) 

Within-worker geometric standard deviation: 

 𝑮𝑮𝑮𝑮𝑮𝑮𝒘𝒘 = 𝐞𝐞𝐞𝐞𝐞𝐞(𝝈𝝈𝒘𝒘) (12) 
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Within-worker correlation coefficient: 

 
𝝆𝝆 =  

𝝈𝝈𝒃𝒃𝟐𝟐

𝝈𝝈𝒃𝒃𝟐𝟐 + 𝝈𝝈𝒘𝒘𝟐𝟐
 (13) 

RX% ratio : Fold range containing the middle X% of the distribution of either worker specific 
geometric means, arithmetic mean or any percentile. Initially X was set at 95% by the first 
proponents of its use (Kromhout et al., 1993; Rappaport et al., 1993). Our proposed default 
value is 80%. 

 𝑹𝑹𝑿𝑿% = 𝐞𝐞𝐞𝐞𝐞𝐞 (𝟐𝟐 ∗ 𝚽𝚽−𝟏𝟏 �
𝟏𝟏 + 𝑿𝑿
𝟐𝟐

� ∗ 𝝈𝝈𝒃𝒃) (14) 

Probability that a single random worker would have his own arithmetic mean above the OEL 

 
𝑷𝑷𝒊𝒊𝒊𝒊𝒊𝒊𝑨𝑨𝑨𝑨(%) = 𝟏𝟏𝟏𝟏𝟏𝟏 ∗ �𝟏𝟏 −𝚽𝚽�

𝐥𝐥𝐥𝐥 (𝐎𝐎𝐎𝐎𝐎𝐎) − �𝝁𝝁𝒀𝒀 + 𝟎𝟎.𝟓𝟓 ∗ 𝝈𝝈𝒘𝒘𝟐𝟐 �
𝝈𝝈𝒃𝒃

�� (15) 

Probability that a single random worker would have his own Xth percentile above the OEL (this is 
equivalent to the probability that a single random worker would have his own exceedance of the 
OEL above (100-X)%: 

 
𝑷𝑷𝒊𝒊𝒊𝒊𝒊𝒊𝑷𝑷𝑷𝑷 (%) = 𝟏𝟏𝟏𝟏𝟏𝟏 ∗ �𝟏𝟏 −𝚽𝚽�

𝐥𝐥𝐥𝐥 (𝐎𝐎𝐎𝐎𝐎𝐎)− �𝝁𝝁𝒀𝒀 + 𝚽𝚽−𝟏𝟏(𝑿𝑿) ∗ 𝝈𝝈𝒘𝒘�
𝝈𝝈𝒃𝒃

�� (16) 

In addition to the above, it is also possible to obtain metrics specific to any individual exposure 
distribution. Hence by definition the exposure distribution for worker i is defined by: 

Geometric mean of the exposure distribution: 

 𝑮𝑮𝑮𝑮 = 𝐞𝐞𝐞𝐞𝐞𝐞 (𝝁𝝁𝒀𝒀 + 𝒃𝒃𝒊𝒊) (17) 

Geometric standard deviation of the exposure distribution: 

 𝑮𝑮𝑮𝑮𝑮𝑮 = 𝐞𝐞𝐞𝐞𝐞𝐞 (𝝈𝝈𝒘𝒘) (18) 

Xth percentile of the exposure distribution: 

 𝑷𝑷𝑷𝑷 = 𝐞𝐞𝐞𝐞𝐞𝐞 �𝝁𝝁𝒀𝒀 + 𝒃𝒃𝒊𝒊 + 𝚽𝚽−𝟏𝟏(𝑿𝑿) ∗ 𝝈𝝈𝒘𝒘� (19) 

where Φ−1 is the inverse cumulative distribution function of the standard normal distribution.
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Exceedance fraction of the OEL: 

 
𝑭𝑭(%) = 𝟏𝟏𝟏𝟏𝟏𝟏 ∗ �𝟏𝟏 −𝚽𝚽�

𝐥𝐥𝐥𝐥(𝐎𝐎𝐎𝐎𝐎𝐎) − 𝛍𝛍𝒀𝒀 − 𝒃𝒃𝒊𝒊
𝝈𝝈𝒘𝒘

�� (20) 

where Φ is the cumulative distribution function of the standard normal distribution. 

Arithmetic mean of the exposure distribution: 

 𝑨𝑨𝑨𝑨 = 𝐞𝐞𝐞𝐞𝐞𝐞�𝝁𝝁𝒀𝒀 + 𝒃𝒃𝒊𝒊 + 𝟎𝟎.𝟓𝟓 ∗  𝝈𝝈𝒘𝒘𝟐𝟐 � (21) 

It should be noted that the above worker-specific metrics, despite being applicable to a single 
worker, are estimated through fitting the Bayesian model to the entire dataset, not just data from 
worker i. 

As for the SEG analysis, uncertainty around the previous metrics is characterised by calculating 
them for all joint values of µ, σB, σw, and the bi values in the posterior sample.  

 
Figure 6. Data processing flow for the between-worker difference analyses – 

Lognormal distribution. 
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Examples 

We shall illustrate the between-worker analysis with the analysis of two fictitious samples drawn 
from known distributions. The first distribution has a group GM of 30, with an overall GSD of 2.5, 
and has low within-worker correlation: rho=0.06 (this value is the 25th percentile of the 
distribution of rho values in the Kromhout et al. dataset described in 4.2.2.1 and 4.2.1.1). The 
second distribution has the same group GM and GSD but has high within-worker correlation: 
rho=0.66 (this value is the 75th percentile of the distribution of rho values in the Kromhout et al. 
dataset). 

From each distribution we drew a sample of 100 observations: ten observations from ten 
different workers. We shall perform the analysis considering an OEL of 150, which is slightly 
higher than the group theoretical 95th percentile (true group P95=135). The two samples are 
presented in Appendix E [sample.3 and sample.4, respectively]. 

For this example, we assumed no measurement error and ran the calculations with the 
[between-worker differences.informedvar] model implemented in R + RJAGS (see 4.3). 

The raw output of the Bayesian calculations includes a sample of 50 000 values from the joint 
posterior distribution of µy / σb / σw / bi (i=1 to k workers). The interpretation of these values is 
similar to the one described in 4.2.1.6. Table 6 summarizes the results of the interpretation of 
the posterior samples, including point estimates and 90% credible intervals, as well as 
overexposure risk metrics. 

Table 6. Exposure metrics point estimates and credible intervals for an example of 
Bayesian calculation for the lognormal model (between-worker difference analyses) 

Parameter Low within-worker 
correlation (rho=0.06) 

High within-worker 
correlation (rho=0.66) 

Group GM (90% CrI) 28.6 [ 23.6 - 34.7 ] 28.3 [ 18.7 - 43.4 ] 

Between-worker GSD (90% CrI) 1.24 [ 1.09 - 1.54 ] 2.15 [ 1.72 - 3.18 ] 

Within-worker GSD (90% CrI) 2.34 [ 2.14 - 2.62 ] 1.74 [ 1.64 - 1.88 ] 

Within-worker correlation (rho) (90% CrI) 0.06 [ 0.00908 - 0.206 ] 0.654 [ 0.47 - 0.818 ] 

Probability that rho>0.2 5.5% 100% 

R.ratio (90% CrI) 1.74 [ 1.24 - 3.01 ] 7.09 [ 3.99 - 19.4 ] 

Probability that R>2 30% 100% 

Probability that R>10 0% 25% 
Probability of individual overexposure (95th 
percentile) in % (90% CrI) 12.1 [ 0.0248 - 52.4 ] 16.3 [ 4.94 - 36.5 ] 

Chances that the above probability is >20% 34% 36% 
Probability of individual overexposure 
(arithmetic mean) in % (90% CrI) 9.5e-08 [ 0 - 0.177 ] 2.38 [ 0.164 - 13.1 ] 

Chances that the above probability is >20% 0% 1.4% 
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Table 6 shows that for both samples, the analysis, based on a relatively large sample size, 
yields results very close to the theoretical distribution in terms of group GM and of the values of 
rho for the low and high variability samples. The group GSD estimates (not provided in Table 6) 
are also close to the theoretical value of 2.5: respective point estimates of 2.4 and 2.6 for the 
low and high within-worker correlation samples. 

For the low within-worker correlation sample, the low correlation with a group GSD at 2.5 yields 
a low between-worker GSD (1.24), illustrated in the low R ratio (1.7), with 70% chances that the 
true value would be below 2, a threshold initially proposed by Kromhout et al. (1993) to define 
“homogeneous”. With low between-worker variability, most of the variability therefore occurs 
within workers, with a within-worker GSD of 2.3. The opposite phenomenon is observed for the 
second sample, with a between-worker GSD of 2.15, corresponding to a R ratio of 7, with 100% 
chances that the true value is above the threshold of 2, and 25% chance that it is above 10. In 
this case, most of the total variability occurs between workers, with a corresponding low within-
worker GSD (1.7). 

To illustrate the notion of individual overexposure, for the low within-worker correlation case, 
Table 6 indicates that the probability that a random worker would have his own 95th percentile 
above the OEL is estimated to be 12.1% (90% CrI 0.02% - 52.4%). The chances that the true 
value for this probability is >20%, the criteria used by NvVA and BOHS, are 34%. Similarly, the 
probability that a random worker would have his own arithmetic mean above the OEL is 
estimated to be ~0% (90% CrI 0.0% - 0.2%). The chances that the true value for this probability 
is >20%, the criteria used by NvVA and BOHS, are 0%. 

The relative similarity of probability of individual overexposure (both for the 95th percentile, close 
to 15% or the arithmetic mean, close to 0%) in both samples despite important differences in 
between-worker variability is noteworthy. This is a consequence of a shared global variability in 
both groups: for sample one, despite little differences between workers in terms of GM (as 
measured by the R ratio), the high day-to-day (within-worker) variability implies a potential for 
relatively elevated values of the worker specific 95th percentile or AM (which both depend on  
𝜎𝜎𝑤𝑤), similar across workers. For sample two, despite important differences between workers in 
terms of GM (as measured by the R ratio), the low day-to-day variability implies relatively low 
values of the worker specific 95th percentile or AM (which both depend on 𝜎𝜎𝑤𝑤), but the large 
differences across workers might cause elevated values for some individuals. To further 
illustrate this point we present in Table 7 the worker-specific exposure metrics for the lowest and 
highest exposed (in terms of GM) workers in both samples. 

Table 7 clearly shows the important differences between the two samples in terms of the 
contrast in the GMs for the low and high exposed workers: GMleast=26 and GMmost=33 for the 
sample with low within-worker correlation, and GMleast=7 and GMmost=130 for the sample with 
high within-worker correlation. Looking at the 95th percentile point estimates shows that workers 
in the first sample all have similar 95th percentiles, all with (again, not taking uncertainty into 
account) an acceptable exposure distribution, albeit somewhat marginally (95th percentile 
around 100-140 for an OEL of 150). For the other sample, the worker-specific 95th percentile 
estimates vary from 18 (very low compared to the OEL, a clearly acceptable situation) to 325 
(more than twice the OEL, a clearly unacceptable situation). These contrasts illustrate the 
proposition from Kromhout et al. and Rappaport et al. that using this type of model can be useful 
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to direct prevention measures towards collective vs. focused individual measures (Kromhout 
et al., 1993; Pesch et al., 2015). 

Table 7. Worker specific exposure metrics point estimates and credible intervals for 
the least and most exposed workers in two samples with low and high within-worker 

correlation 

Parameter Low within-worker correlation 
(rho=0.06) 

High within-worker correlation 
(rho=0.66) 

 
Least exposed 
worker (GM) 

Most exposed 
worker (GM) 

Least exposed 
worker (GM) 

Most exposed 
worker (GM) 

GM 26.2 [ 18.7 - 34.7 ] 33.4 [ 25.1 - 48.4 ] 7.13 [ 5.32 - 9.53 ] 130 [ 97.3 - 174 ] 

GSD 2.34 [ 2.14 - 2.62 ] 2.34 [ 2.14 - 2.62 ] 1.74 [ 1.64 - 1.88 ] 1.74 [ 1.64 - 1.88 ] 

Exceedance 
fraction (%) 2.02 [ 0.57 - 5.06 ] 3.97 [ 1.57 - 9.53 ] 0 [ 0 - 0 ] 40.1 [ 22.1 - 60.6 ]  

95th percentile 106 [ 73.6 - 151 ] 137 [ 99.5 - 202 ] 17.8 [ 13.1 - 24.7 ] 325 [ 243 - 445 ] 

Arithmetic mean 37.8 [ 26.7 - 51.2 ] 48.3 [ 36.1 - 70.1 ] 8.32 [ 6.21 - 11.2 ] 152 [ 114 - 204 ] 

Table 8 illustrates the analysis of a sample with the same group GM and GSD as above, but 
with average within-worker correlation (rho=0.22, the median value in the Kromhout et al. 
database), and estimated from a realistic sample size corresponding to the BOHS-NVvA 
guidelines (n=12, with four repeated measurements on three workers) [sample.5 in Appendix E]. 

Table 8. Exposure metrics point estimates and credible intervals for an example of 
Bayesian calculation for the lognormal model (between-worker difference analyses) with 

realistic sample size 

Parameter Point estimate and 90% credible 
interval 

Group GM (90% CrI) 30.9 [ 16.9 - 56.4 ] 
Between-worker GSD (90% CrI) 1.4 [ 1.11 - 2.56 ] 
Within-worker GSD (90% CrI) 2.31 [ 1.84 - 3.42 ] 
Within-worker correlation (rho) (90% CrI) 0.135 [ 0.0121 - 0.577 ]  
Probability that rho>0.2 37% 
R.ratio (90% CrI) 2.35 [ 1.29 - 11.1 ]  
Probability that R>2 62% 
Probability that R>10 5.8% 
Probability of individual overexposure (95th percentile) in % 
(90% CrI) 29.7 [ 0.0114 - 99.2 ] 

Chances that the above probability is >20% 59% 
Probability of individual overexposure (arithmetic mean) in % 
(90% CrI) 0.0204 [ 0 - 21.3 ] 

Chances that the above probability is >20% 5.4% 
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The results in Table 8 show the important uncertainty in the parameters estimated from the 
between-worker differences model at current proposed sample sizes. Hence the 90% credible 
interval for R includes both values considered as showing homogeneous exposure (<2) and 
very heterogeneous exposure (>10). This is also reflected in the uncertainty around the 
probability of individual exposure (for the criteria 95th percentile>OEL), estimated for this sample 
at 29.7%, with a 90% credible interval ranging from 0.01 to 99.2%. 

4.3 WebExpo algorithms 

The main deliverable of the WebExpo project is the public availability of the algorithms that 
implement the Bayesian and numerical analyses described in this report. The algorithms are all 
available from https://github.com/webexpo/ and are licensed under the Appache 2.0 open 
source licence15. This report constitutes the accompanying documentation. 

As described in section 3.3.2, the models and numerical interpretation of the posterior samples 
were first written in the R language. The models themselves were coded in two ways. First, they 
were written in pure R code, with no call to an external package, to permit translation into C# 
and JavaScript. As mentioned in 3.2.2.1, they were also coded using the JAGS application to 
allow R users to perform the calculations with optimal efficiency. 

In a second step, the pure R code was translated into C# and JavaScript. During the initial 
translating effort, it quickly became apparent that the resources required to translate the 
measurement error component of the pure R code would be very costly, and that their full 
implementation would be done at the cost of other components of the project (i.e., less prior 
distribution options). We elected to prioritize translation with the following objectives: 

1. To ensure that core SEG and between-worker difference analyses are implemented in all 
languages for the lognormal and normal models; 

2. To ensure that the measurement error is implemented in one language outside R. 

Therefore, measurement error was implemented only in C# language, and only with error 
expressed as a CV (the type thought to be the most useful). The treatment of right/left and 
interval censored data was included in all languages. Table 9 provides details about the various 
components implemented in each of the four language settings. 

                                                
15 https://www.apache.org/licenses/LICENSE-2.0  

https://github.com/webexpo/
https://www.apache.org/licenses/LICENSE-2.0
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Table 9. Various components implemented in each of the four language settings 
 No measurement error Measurement error as CV Measurement error as SD 
 R R+JAGS C# Java-

Script R R+JAGS C# Java-
Script R R+JAGS C# Java-

Script 
SEG analysis 

Informedvar        -   - - 
Uninformative        -   - - 
Past.data        -   - - 
Riskband   - -   - -   - - 

Between-worker differences 
Informedvar       - -   - - 
Uninformative       - -   - - 

 

4.3.1 Organisation of the scripts 

The WebExpo R (pure R and R+JAGS) scripts are organised in the following subsections: 

Data formatting scripts: These scripts are used to format the observations prior to submission 
to the Bayesian calculation functions. 

Bayesian model scripts: This represents the major part of the created library. The 
corresponding algorithms perform the MCMC sampling and their output includes the samples 
from the posterior distributions. 

Bayesian output interpretation scripts: The scripts apply equations 5 to 21 to the posterior 
samples to obtain the exposure metrics described in the corresponding sections. 

In addition, the R scripts include random data generation functions, which generate custom 
random samples corresponding to the various models implemented in WebExpo. Finally, the R 
library also includes scripts to replicate all numerical results presented in the present report. 

While using the same overall architecture, the C# and JavaScript libraries are organized 
somewhat differently due to the nature of the programming languages. Like the examples in the 
R library, the C# and JavaScript libraries also include illustrative algorithms guiding users across 
the various Bayesian models. Finally, the C# and JavaScript libraries include the code 
corresponding to the prototypes, comprising a data entry interface and a numerical result output 
interface. 

4.3.2 Calculation parameters 

The WebExpo algorithms require an ensemble of inputs in order to perform the MCMC 
calculations and to provide interpreted exposure metrics as well as the associated uncertainty. 
They can be separated into three main categories: observations, Bayesian parameters and 
numerical interpretation parameters. 
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4.3.2.1 Observations 

This category includes the actual values entered by the user. In theory, there is no lower limit to 
the number of observations supplied by the users, as performing Bayesian calculation without 
any data will just cause the posterior samples to replicate the prior distributions. We, however, 
recommend a pragmatic threshold of a minimum of three uncensored observations (e.g., six 
measurement concentrations including three nondetects). Similarly, there is not a theoretical 
upper limit to the number of observations submitted for analysis, although at some point 
memory usage might exceed the computer capacity. As an example, we analysed a 100 000-
observation dataset using the R+RJAGS script for the SEG lognormal model on a regular 
desktop computer in a little over 120 min. In terms of the sample values themselves, the only 
restriction is that they should be strictly positive, and within the bounds defined for the prior 
distributions of the Bayesian models. For the lognormal model, we performed a division by the 
OEL prior to Bayesian calculations, which permitted to limit the range of values actually 
analysed, and allowed us to propose default “universal” values for the lognormal priors (e.g., 
bounds for the mean). We also put in this first data input category the occupational exposure 
limit, which should be expressed in the same scale as the observations.   

4.3.2.2 Bayesian parameters 

This series of parameters can be further separated into three parts. First the user must select 
the model for his analysis. This includes the choice between the normal and lognormal 
distributions, between the SEG and the between-worker difference analyses, and whether 
measurement error should be considered. 

The second set of Bayesian inputs includes the parameters of the selected prior distributions. 
Table 10 below presents a summary list of these parameters, while the fully detailed list, 
accompanied by default values and recommended ranges, can be found in Appendix D. 

The third set of parameters includes inputs for the MCM sampling procedures. They comprise 
the number of burn-in iterations (iterations discarded at the end of the sampling, used to let the 
MCMC procedure attain a stationary distribution), the number of iterations (i.e., size of the 
posterior sample), as well as initial values for the parameters to be estimated. We recommend 
using 25 000 iterations with 2 500 burn-in iterations, for the SEG models, and 50 000/5 000 for 
the between-worker models. The initial values should be set to plausible values for the 
parameters of interest, within the bounds set by the prior distributions. 
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Table 10. Parameters defining prior distributions in the WebExpo models 

Model Prior parameters 

SEG.informedvar 
Bounds for the uniform distribution for µ 
Distributional parameters for the lognormal distribution for σ  

SEG.past.data 
Bounds for the uniform distribution for µ 
Distributional parameters for the lognormal distribution for σ  
Mean, standard deviation, and sample size of the external dataset 

SEG.uninformative 
Bounds for the uniform distribution for µ 
Bounds for the uniform distribution for σ  

SEG.riskband 

Bounds for the uniform distribution for µ 
Bounds for the uniform distribution for σ 
Number of risk bands and associated limits 
Prior probability associated with each band 

Between 
worker.informed var 

Bounds for the uniform distribution for µ 
Distributional parameters for the lognormal distributions for σw and σb   

Between 
worker.uninformative  

Bounds for the uniform distribution for µ 
Bounds for the uniform distributions for σw and σb   

Note : for most parameters, the scale depends on the choice of distribution (normal/lognormal),e.g., for 
SEG.pastdata, the supplied mean is the arithmetic mean of the observations for the normal model, but 
the log-transformed OEL-standardized geometric mean for the lognormal model. 

4.3.2.3 Numerical interpretation parameters 

The numerical interpretation parameters have no influence on the Bayesian calculations per se; 
they are used to transform information in the posterior samples into metrics relevant to risk 
assessment and express uncertainty around their estimation. They include the following: 

- Probability for credible intervals (default 90%); 

- Exceedance threshold (default 5%): threshold defining an acceptable proportion of 
exposure levels above the OEL; 

- Critical percentile (default 95%): percentile of interest in the exposure distribution; 

- Specific to the between-worker difference analyses: 

o Threshold for the within-worker correlation coefficient (default 0.2): the BOHS 
guidelines recommend performing a detailed assessment of between-worker 
differences when the point estimate of this coefficient is above 0.2; 

o Coverage of the population for the R ratio (default 80%): the initial proposition 
from Kromhout et al. used 95% (Kromhout et al., 1993). This would correspond 
approximately to comparing the most and least exposed workers in a population 
of 100. Our less stringent proposal would correspond to comparing the least and 
most exposed workers in a population of ten, a figure closer to practical exposure 
groups in day-to-day IH interventions; 



46 WebExpo 
Towards a Better Interpretation of Measurements of Occupational Exposure 

to Chemicals in the Workplace 

IRSST 

 
o Threshold for the probability of individual overexposure (default 20%): the BOHS-

NVvA guidelines recommend considering an exposure situation as non-compliant 
when the probability of individual overexposure (calculated considering the 95th 
percentile) is above 20%. Rappaport et al. proposed using a threshold of 10% 
and considering probability of individual overexposure defined by the arithmetic 
mean (Rappaport et al., 1995). 

4.3.3 Performance 

4.3.3.1 Numerical accuracy 

As mentioned in section 3.2.2.2, we did not perform simulations to evaluate the estimation 
accuracy of our models and estimation procedures, as they rely on well established literature. 
However, we concentrated on verifying the reproducibility of the results across the various 
platforms (R, R+RJAGS, JavaScript, C#). 

C# 

For testing the SEG analysis models in C#, we used 1 standard sample for each of 24 scenarios 
defined by combinations of the following characteristics: 

• sample sizes 10 or 100 
• low variability (GSD=1.5 for lognormal, SD=2 for normal distribution) or high variability 

(GSD=3.5 for lognormal, SD=15 for normal distribution) 
• no censoring, low censoring (15% for n=100, 30% for n=10) or high censoring (50%) 
• normal or lognormal 

The samples were fit using the C# and R algorithms for each of the following routines: 
SEG.informedvar, SEG.past.data informed prior and SEG.uninformative. 

For the between-worker analysis, a similar approach was used where C# and R were compared 
for 24 scenarios: 

• 5 workers with 3 measurements per worker, 10 workers with 5 measurements per 
worker and 20 workers with 20 measurements per worker; 

• low within-worker correlation (rho=0.2) or high within-worker correlation (rho=0.8); 
• no censoring or 50% censoring; 
• lognormal or normal. 

Finally, for the measurement error module of the SEG.informedvar and SEG.uninformative 
functions, 12 scenarios were tested: 

• sample sizes of 5, 10 or 100; 
• no censoring or 60% censoring; 
• lognormal or normal. 
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For the lognormal distribution, measurement error was defined as unknown between 20 and 
30%. For the normal distribution, it was defined as unknown between 0.1 and 1.2%. 

Across all these experiments, the C# and R differences, calculated at each of the 25 000 
iterations for the unkown parameters µ and σ, were on average around 10-15, with maximum 
values around 10-10. The differences between C# and R were always several orders of 
magnitude lower than differences observed within the platform (e.g., obtained by repeating an 
analysis with R or C# with a different random seed). 

JavaScript 

During the translation from pure R to JavaScript, we compared quantiles of the posterior 
samples for the unknown parameters. For the SEG.informedvar, SEG.past.data, and 
SEG.uninformative functions, the following 4 scenarios were tested for a standard sample of 
size 100: no censoring or 60% censoring; lognormal or normal distribution.  

For the between worker informedvar and between worker uninformative functions, the 8 tested 
samples included: 10 workers with 5 measurements per worker, 20 workers with 20 
measurements per worker; no censoring or 60% censoring; lognormal or normal distribution.  

Across these experiments, the JavaScript and R differences, calculated for all unknown 
parameters at each of the 9 percentiles of the MCMC chains, were on average around 10-15, 
with maximum values around 10-10. Again the differences between JavaScript and R were 
always several orders of magnitude lower than differences observed within the platform (e.g., 
obtained by repeating an analysis with R or JavaScript). 

R+RJAGS 

For differences between R and RJAGS, the following functions were tested using the protocol 
described in section 3.2.2, for both the lognormal and normal cases: SEG.informedvar with 
measurement error (specified as a known CV value), SEG.past.data, 
SEG.uninformative, SEG.riskband, between worker.informedvar and between worker.uninforma
tive (with and without measurement error). The results showed that R and R+RJAGS yielded 
satisfactorily comparable results. As an illustration, Table 11 presents the results of the analysis 
of a lognormal sample of size 9 (<25.7 / 17.1 / 168 / 85.3 / 66.4 / <49.8 / 33.2 / <24.4 / 38.3 
[sample.6 in Appendix E]), with 30% censored data and high variability (true GSD=2.5). The 
analysis was run 50 times with R and R+RJAGS, and we show the minimum and maximum 
values observed for ten parameters. We also show the result of one run using C# and one run 
using JavaScript. 

Table 11 provides insight into the variability expected in such analyses and confirms that the 
variations are of little significance compared with the uncertainty surrounding the point 
estimates. These variations are expected to be the most important for credible limits which are 
tails of the posterior samples, as well as for quantities associated with much uncertainty (such 
as exceedance and the 95th percentile, which involves the tail of the exposure distribution). 
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Table 11. Comparability of results across platforms 

Parameter R+JAGS 
(min) (a) 

R+JAGS 
(max) (b) 

R 
(min) (a) 

R  
(max) (a) C# JavaScript 

GM point estimate 34.1 34.7 34.0 34.6 34.3 34.4 

GM 95% LCL 16.3 17.2 16.5 17.0 16.8 16.6 

GM 95% UCL 60.1 61.9 60.2 61.6 60.8 61.0 

GSD point estimate 2.63 2.69 2.63 2.68 2.66 2.66 

GSD 95% LCL 1.88 1.91 1.89 1.90 1.90 1.90 

GSD 95% UCL 5.21 5.56 5.21 5.47 5.32 5.34 

Exceedance point estimate (%) 13.2 13.5 13.2 13.5 13.3 13.5 

Exceedance 95% LCL (%) 3.33 3.53 3.34 3.51 3.41 3.37 

Exceedance 95% UCL (%) 32.6 33.9 33.0 34.0 33.5 33.5 

Exceedance overexposure risk (%) 88.8 89.9 88.9 89.6 89.1 89.1 

(a), minimum values across 50 analyses; (b), maximum value across 50 analyses; LCL, lower confidence 
limit; UCL, upper confidence limit. 

4.3.3.2 Calculation speed 

The speed of calculation for the algorithms in this project depends on multiple factors. In 
Bayesian MCMC analysis, larger sample size as well as the number of iterations will increase 
calculation time. In addition, measurement error as well as censorship will also increase 
calculation time, since additional random values must be generated. Outside of these 
considerations, different platforms might be better suited/optimized for the algorithms, and 
computer performance is an important determinant. We didn’t conduct an extensive survey to 
evaluate computing time in a vast array of situations. However, for what we believe would cover 
most situations (n<50 and no measurement error), all platforms used in WebExpo should 
perform the calculations (involving 25 000 or 50 000 iterations depending on the model) either 
instantaneously or within a few seconds. Introducing measurement error is the major 
determinant of calculation speed in our algorithms: the fastest platform is R+RJAGS, with 
calculation time within a minute, followed by C# (up to 10 minutes), and lastly R, from 30 
minutes for small samples to several hours for the more complex between-worker differences 
model and higher sample sizes. 

4.4 Specific objective 3: WebExpo prototypes 

The C# and JavaScript prototypes are available from https://github.com/webexpo/. Both 
prototypes include the WebExpo models as described in Table 9. Hence, compared to the R 
and R+JAGS, which include all possibilities described in this report, the C# prototype only 
allows one type of measurement error (expressed as a CV) for the SEG models, and does not 
include the risk-band model. The JavaScript prototype does not include treatment of 
measurement error or the risk-band model. Both prototypes provide the same numerical output, 
including all metrics listed in Table 2, as well as the posterior samples for users wishing to 
perform different post-MCMC calculations. In the case of the between-worker analysis, both 

https://github.com/webexpo/
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prototypes also allow selecting a worker and obtaining worker-specific exposure metrics as well 
as the posterior sample of the worker specific mean. Finally, both prototypes are available in 
French and English, and include a multilingual infrastructure amenable to translation into other 
languages. Figures 7 and 8 respectively show the C# and JavaScript user interfaces. 

 

 
Figure 7. User interface of the C# WebExpo prototype. 
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Figure 8. User interface of the JavaScript WebExpo prototype. 
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5. DISCUSSION 

5.1 Overview 

Despite the existence of a consensus framework for the analysis of occupational hygiene 
measurement data, refined up to the last decade and exemplified in the recent European 
guidelines (CEN, 2018), there is a scarcity of tools available to practitioners to perform the 
rather complex associated calculations, especially related to data containing non-detects, a 
frequent occurrence in our field. 

The WebExpo project aimed at creating a list of calculations that would provide a 
comprehensive answer to IH data interpretation based on an ensemble of current guidelines, 
create algorithms that would implement these calculations within a single methodological 
framework, and share these algorithms in different languages to facilitate their use for the 
creation of practical tools. We achieved these goals through establishing the list of calculations 
based on a review of guidelines and recent literature, and a consultation with a panel of 
international exposure assessment experts, implementing the calculations using Bayesian 
statistics, and creating algorithms in statistical and programming languages showcased by two 
prototype tools. 

The resulting WebExpo algorithms allow analysing lognormal or normal data both for estimating 
a single distribution or within- and between-worker components of variance when repeated 
measurements are available on some individuals. In each case, several types of prior 
information can be used, including information from relevant external data and expert judgment. 
Censored data treatment (left, right or interval) is seamlessly integrated in all calculations, and 
measurement error can be taken into account in the analysis. Finally, in addition to the more 
traditional confidence intervals, the nature of Bayesian statistics allowed to express uncertainty 
in the form of probabilistic statements. 

5.2 Choosing between different Bayesian priors 

The WebExpo models provide several choices of prior distribution depending on the type of 
analysis. Mostly, they can be summarized as: the informedvar models, where there is little prior 
information on the mean, but variability is minimally informed based on historical data; the 
uninformative models, where prior distributions are uniform with large (customizable) ranges; 
and the riskband and past.data models, where significant information can be present. The 
traditional Bayesian approach recommends assessing robustness across a range of different 
priors to widen the interpretation of an analysis (Gelman, 2013), as it will apply to a wider variety 
of interpretations. For realistic sample sizes in our field (5-10 observations), informative priors 
will typically have a non-trivial effect on the final exposure estimates (Jones & Burstyn, 2017) 
compared to uninformed priors. Hygienists analysing industrial hygiene data and trying different 
priors (uninformative or informed) therefore run the risk of finding themselves in a quandary, 
with potentially very different results across priors. Of course, such situations would warrant 
further evaluation efforts. Note that this is a strength rather than a weakness of the Bayesian 
approach, and it clearly points out that the sample sizes collected to assess workplace exposure 
are often inadequate. Adequate sample sizes would allow for strong conclusions regardless of 
the prior information used, most often not the case in this area. 
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We recommend using the informedvar priors as a reasonable default in the WebExpo library as 
they represent a compromise, with an uninformative prior for the geometric mean, but with a 
moderately informative prior on variability, based on a population of available workplace 
variability values, as used by McNally et al. and recently advocated by Jones and Burstyn 
(Jones & Burstyn, 2017; McNally et al., 2014). 

5.3 Strengths 

To our knowledge, the WebExpo algorithms include the most comprehensive list of calculations 
considered relevant to the interpretation of industrial hygiene data based on current best 
practice. While all calculations proposed in our algorithms may not be deemed of interest to all, 
the open source nature of WebExpo should allow for the creation of applications tailored to any 
specific need. Moreover, the major contribution of this project being the Bayesian engine and 
the creation of the posterior samples through MCMC, any additional treatment of these data 
(outside of the calculations in Tables 2 and 3) is straightforward. 

Despite the fact that the treatment of non-detects has long represented a major challenge in the 
interpretation of IH data, most recent developments (see e.g., Huynh et al. and Krishnamoorty 
and Mathews (Huynh et al., 2016; Krishnamoorthy et al., 2009)) have not been implemented in 
practical tools. IHSTAT, arguably the most popular data analysis tool in IH, doesn’t allow for 
censored data, although Lavoué recently proposed a tool to implement the regression on order 
statistics approach within IHSTAT (J. Lavoué, 2013). HYGINIST implements regression on 
order statistics limited to one censoring point, as does BWSTAT. IHData analyst and ProUCL 
include several existing procedures, but none based on multiple imputation. WebExpo uses the 
same Bayesian approach as described in Huynh et al. (2014) and implemented in ART (McNally 
et al., 2014), applied to all models, and extended from only left-censored data (arguably the 
most common case in industrial hygiene) to interval-censored and right-censored data. 

Management of uncertainty is an essential part of risk assessment (Waters et al., 2015). In 
WebExpo, we leveraged the probabilistic nature of Bayesian statistics to propose, along with the 
more traditional calculations, a framework where one can estimate the probability that 
overexposure criteria are met. Inspired by Hewett et al. (Paul Hewett et al., 2006), whose 
proposal we extended to other metrics and types of analyses, we believe that stating exposure 
data interpretation in the form “there is an  XX% chance that our overexposure criterion is met” 
is more efficient when communicating with managers and workers compared to traditional 
reporting of statistical complexities. 

The WebExpo algorithms and prototypes have a potentially wider application than IH 
measurement data analysis. Hence, in essence, we created Bayesian engines for the 
estimation of lognormal and normal parameters of any quantity for which these models may be 
deemed relevant. Moreover, the between-worker difference analysis model can be used using 
other grouping units instead of workers, such as establishment, occupation, or contaminated 
site for environmental pollution data. 

Our algorithms are the first to allow taking into account measurement error in IH data analysis. 
As mentioned in the introduction, only two publications assessed whether analytical variability 
might impact the evaluation of environmental variability. We do not think that measurement error 
should always be considered, as it is computationally costly, but, at least, situations when it is 
deemed important can now be processed rigorously. More importantly perhaps, the possibility to 
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include measurement error in IH data interpretation without recourse to any simplification should 
allow revisiting Nicas et al. (Nicas et al., 1991) and Grzebyk and Sandino’s (Grzebyk & Sandino, 
2005) foundation work to obtain a more refined picture of the impact or measurement error on 
decision-making. 

Finally, the WebExpo algorithms are freely available under the open source license Apache 2.0. 
They can therefore be used without restriction by anyone wanting to create tools or include 
them in a pre-existing data management system (provided proper acknowledgement to the 
researchers and funders). We hope this will help their use by institutions and companies 
working in IH-related fields. While not directly aimed at practitioners, this availability should 
facilitate the creation of powerful practical data interpretation. 

5.4 Limitations 

All models set up by the statistics team were not implemented in all platforms. Hence, 
measurement error is only available in R and C#, and the risk-band prior model is only available 
in R. These restrictions were necessary given the unforeseen challenge represented by 
translation of the R code with measurement error. As an illustration, the main MCMC code went 
from ~500 to ~3 500 lines when measurement error was added. As the common usage in IH 
data analysis does not consider measurement error, we believe that the majority of current 
needs would be covered by the models implemented in all platforms in our project. Users 
wishing to perform more advanced analyses can use the C# or R code. As pure R code is 
available for everything, extending the current C# or JavaScript capabilities is also possible 
given appropriate resources. 

WebExpo does not include non-parametric statistics, nor does it include functions for the 
verification of the distributional shape of the sample. Both features were discussed in the expert 
committee meeting. With the low statistical power associated with distribution-free approaches, 
it was judged that adding them would not be useful given current practice in terms of sample 
size (typically <10 to assess a particular situation). In a similar fashion, the practical usefulness 
of formal hypothesis tests to evaluate normality/lognormality (popular tests in IH include the 
Shapiro-Wilk and Shapiro-Francia tests (Shapiro & Francia, 1972a, 1972b)) was judged limited 
in order to decide whether to use or not the lognormal framework in risk assessment. In 
essence, answering the question “Does this sample come from a lognormal distribution”, which 
is the formal test question, is not directly relevant to the actual question “Does the lognormal 
model permit drawing useful conclusions”. Moreover, the power of such tests is very limited at 
current sample sizes in IH. As a consequence, we recommend, for the interpretation of 
workplace exposure data, presuming lognormality as a reasonable default assumption given 
past empirical evidence, but also using graphical tools such as the Q-Q plot to detect any strong 
deviation. Notwithstanding the WebExpo team opinion about formal statistical tests, users are 
free to use or built any procedure to evaluate the data prior to being fed to the lognormal/normal 
WebExpo calculation algorithms. 

Limited “determinants of exposure” analysis tools were initially considered for inclusion in 
WebExpo. For example, the possibility to analyse the effect of a categorical (ANOVA type 
analysis) or continuous (linear or smoothed regression) variable, up to a 2 variable model, was 
examined. Such analyses have indeed become the bread and butter of exposure dataset 
analyses published in IH literature, and are of increased usefulness as companies/institutions 
accumulate exposure data in computerized format. They were excluded from the scope of 
WebExpo, as the experts judged that the level of statistical expertise necessary to adequately 
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conduct such analyses would imply mastery of a statistical package, and thus render creating a 
tool a fruitless endeavour. However we would like to note that performing the SEG analysis 
separately on each category of a nominal variable (e.g., day/night shift data) and combining the 
MCMC sample would allow performing analyses related to the traditional ANOVA (e.g., estimate 
difference in exceedance fraction, + credible interval, between any 2 categories). However they 
are not equivalent, as ANOVA uses the whole dataset as opposed to only strata-specific 
datasets. In addition, ANOVA assumes a common variance within strata, as opposed to strata-
specific variances. 

Finally, while we believe the algorithms developed in this project will ultimately benefit IH 
practitioners, they do not represent an immediate accessible toolbox for data interpretation. 
Hence, accessible introduction to lognormal statistics, illustrative graphs, and output complexity 
tailored to the level of expertise of different users were all judged essential elements of a useful 
IH data interpretation toolbox by both committees. We are in full agreement with this 
assessment, and would like to underline that the C# and JavaScript prototypes should not be 
seen as practical IH tools as they contain none of these elements. We believe, however, that we 
have created a solid and comprehensive computational foundation that should serve as a 
starting point to create tools that can be tailored to the specific needs of various stakeholders. 

5.5 Relationship between Webexpo and the Expostats online data interpretation 
toolbox 

Approximately at the same time when the application for the current project was submitted for 
funding to IRSST (in 2014), our team at the University of Montreal launched the first iteration of 
the Expostats toolset16, a free web-based industrial hygiene data interpretation suite. Initially 
very limited in terms of user interface and capability, it has evolved into a comprehensive set of 
tools, now also available for offline use, and has been recently described  by Lavoué et al. in the 
Annals of work exposures and health (Jérôme Lavoué et al., 2018). The Expostats tools allow 
similar calculations as described in this report except they only include one type of prior (the 
informedvar prior) and do not permit measurement error. The Bayesian models on Expostats 
are run using JAGS and R scripts and the SHINY17 application, which serves as an interface 
between R and users online. The Expostats toolbox runs on servers with limited capability, 
restraining the number of simultaneous users, and the calculation engine cannot easily be taken 
up by others for creating their own tools due to licensing issues. In essence, Expostats aimed at 
providing practitionners with advanced calculation tools in the short term and has been 
functional for already several years. On the other hand, Webexpo aimed at creating an open 
source algorithmic foundation for the same set of calculations, enabling institutions or 
companies to create solutions tailored to their own needs, ultimately leading, in the longer term, 
to a wider use of state-of-the-art data interpretation practice in our field. 

 

                                                
16 http://www.expostats.ca/site/en/index.html  
17 https://shiny.rstudio.com/  

http://www.expostats.ca/site/en/index.html
http://www.expostats.ca/site/en/index.html
http://www.expostats.ca/site/en/index.html
https://shiny.rstudio.com/


IRSST WebExpo 
Towards a Better Interpretation of Measurements of Occupational Exposure 
to Chemicals in the Workplace 

55 

 

6. CONCLUSION 

Quantitative IH data interpretation is just one part of risk analysis in the workplace, and in many 
cases, decisions can be reached without the need to collect measurements. However, the 
availability of quantitative exposure data warrants an adequate interpretation. This remains a 
challenging part of risk assessment in the workplace given high environmental variability, a 
rather complex statistical analysis framework, and a surprising scarcity of practical tools. The 
WebExpo project represents a major effort to translate recent computational and theoretical 
developments towards practice. While the proposed algorithms and prototypes cannot yet be 
used directly by practitioners, they can be freely used by any institution, individual or corporation 
as a powerful and rigorous foundation for next generation IH data interpretation tools. In 
particular, the two prototypes will serve as starting points for the future creation of an IRSST-
specific fully-fledged practical data interpretation tool. It remains important to keep in mind that 
soundness of the conclusions will rely on the suitability of the lognormal/normal model for the 
situation at hand, on the representativeness and quality of the samples collected, as well as the 
adequacy of priors. 
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ANNEXE A: 
MEETING NOTES FROM THE INTERNATIONAL EXPERT MEETING 

 
WebExpo meeting 

February 18-19, 2016 
Montréal 

Final meeting notes 

CONTENT 
1 Introduction        
2 List of core calculations – functionalities included in WebExpo  

2.1. Group assessment (e.g., data from a similar exposure group)  
2.1. Within-/between-worker variability model    
2.1. Other functionalities       

3 Discussion around Bayesian priors      
4 Discussion around small datasets 
5 Discussion around distribution free approaches – assumptions about the lognormal model 
6 Discussions around risk communication 
7 References 

1. INTRODUCTION 

This document summaries the discussions during the WebExpo meeting, held February 18-19, 
2016, in Montréal. It was drafted by Jérôme Lavoué and commented/revised by the meeting 
attendees. Very little background information is provided since it is available in the scientific 
protocol and in the meeting preparatory documents. This summary is written so as to present 
the general impressions/ideas collected during the meeting rather than specific arguments by 
particular persons. 

Table A1: list of attendees at the expert meeting 
Name Affiliation Domain of expertise Title 

Jérôme Lavoué Université de Montréal Exposure science PI 
Lawrence Joseph McGill University Statistics Co-PI 

Simon Aubin IRSST IH metrology Collaborator 
France Labrèche IRSST Epidemiology Collaborator 

Tracy Kirkham University of Toronto Industrial hygiene Collaborator 
Gautier Mater INRS Industrial hygiene Collaborator 
Frédéric Clerc INRS Statistics Collaborator 
Patrick Belisle McGill University Statistical programming Research officer 

Dunia Ouedraogo Université de Montréal Exposure science Ph.D student 
Martie van Tongeren IOM Exposure science Expert 

Martine Chouvet ITGA Industrial hygiene Expert 
Paul Bozek University of Toronto Industrial hygiene Expert 

Hugh Davies University of British Columbia Industrial hygiene Expert 
Michel Gérin Université de Montréal Industrial hygiene Expert 
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2. LIST OF CORE CALCULATIONS – FUNCTIONALITIES INCLUDED IN WebExpo 

2.1 Group assessment (e.g., data from a similar exposure group) 

There was a large consensus that the 3 proposed risk metrics: exceedance (needs specification 
of the OEL), 95th percentile, and arithmetic mean should be included in WebExpo. 

2.2 Between- and within-worker variability model 

The group agreed that the following metrics were relevant for the between- and within-worker 
analysis: 

• Probability that a random worker has his own 95th percentile above the OEL 

• Probability that a random worker has his own arithmetic mean above the OEL 

• Between-worker variability 

• Within-worker variability (one mean value for all workers) 

• Within-worker correlation coefficient 

• Rappaport's ratio 

Other proposals to reflect differences between workers included reporting an interval or 
standard deviation for the risk metrics of workers, e.g., average exceedance was 15%, with a 
standard deviation of 5% across workers. A tweaking of the Rappaport’s ratio was also 
proposed, using less extreme percentiles of the between-worker distribution, e.g., 10% and 90% 
rather than 2.5% and 97.5%, in order to be more easily interpretable for smaller groups of 
workers (i.e., what is the 2.5th percentile of a population of 10 workers?). 

In terms of evaluating whether a group exposure is homogenous or not, the usefulness of the 
ANOVA test was criticised strongly because: its real meaning is not understood by most, and 
because it does not provide an answer to the actual question of interest “Are differences 
between workers sufficient to have an impact on the final diagnosis?” On the one hand, small 
sample size won’t allow detecting important differences; on the other hand, rejection of the null 
hypothesis can occur even if the differences are very small. The group consensus is that 
providing estimates of the amplitude of between-worker differences is preferable. 

The group also agreed that it is useful to provide individual exposure estimates for each 
sampled worker, although these estimates are quite uncertain. Ethical considerations related to 
“pointing fingers” should nevertheless be taken into account when reporting/communicating the 
results. 

It was underlined that although it would be interesting to estimate worker-specific within-worker 
variability, it was not realistic to do so with usual sample sizes. There was an interest in 
simulation projects exploring the impact of failing to model such differences in diagnosis. 
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2.3 Other functionalities 

The group agreed that it would be interesting to include the possibility to model the influence of 
one categorical variable. It should be flexible and allow input of data through EXCEL files with 
several candidates that could be analysed separately by a simple selection by the user. 

For the potential addition of a continuous variable, the group expressed interest (sample 
duration, temporal trend) but acknowledged the added technical difficulties (adequacy of a 
simple slope, interpretation of the slope). The biggest interest was in temporal trends. 

The group did not express a huge interest in the possibility to analyse interval censored data 
(rather than only left censored data), or to evaluate serial correlation. 

Some institutions recommend flagging situations with an elevated GSD to identify abnormal 
conditions. There was not a consensus in the group about the interest of this procedure, or to 
which values would represent “acceptable” GSDs. An elevated GSD may only reflect very 
variable exposure conditions (e.g., firefighting). 

The possibility to include sampling error was raised, as it is easy to model in the Bayesian 
framework and uncertainty around a full-shift value might be important when only a part of the 
shift was actually monitored. As available studies (2 papers) showed that measurement error in 
IH would matter in very few situations compared to environmental variability, the group agreed 
that it was not necessarily useful to model the measurement error across the board, but better 
to offer the possibility to include it in restricted conditions. 

3. DISCUSSION AROUND BAYESIAN PRIORS 

It was mentioned that most users won’t have the prerequisite knowledge to evaluate the 
adequacy/value of different proposed priors. Generic priors might be applicable in several 
situations (e.g., GSD based on the Kromhout et al. database), but will bring very little 
information. On the other hand, informative specific priors (e.g., BDA style) can bring more 
information, but it might be very costly to make sure they are accurate. In addition, it will not be 
possible to know if they really are accurate, given that the actual data will probably be 
insufficient to check that. 

We are in a situation (small sample size) where it is not really possible to assess whether the 
various priors are good, and where the final results will rely quite heavily on the priors. As a 
result, if they do not agree, the only valid conclusion will be that the data is not good enough 
and that more samples are required. 

About priors that resemble another dataset (i.e., provide a GM, GSD and a virtual sample size), 
it is remarked that users would typically be lost when they have to select the virtual sample size. 
As an alternative, it would be possible to have a slider showing what happens for different 
values of these parameters. 

It is also remarked that rather than only having a parameter reflecting virtual sample size, it 
would be better to have a parameter reflecting “closeness” of the prior values to the situation at 
hand (e.g., a slider from “relevant to my situation” to “little relevant”). 
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The statisticians in the group underlined that data typically collected in IH does not seem 
sufficient to adequately characterize exposure in many situations. It is a consensus in the group 
that the tools should then focus on illustrating the important uncertainty in exposure estimates. 
One possibility would involve taking the focus away from point estimates, to reflect more the 
range of likely values. 

The group agrees that there is interest in including several different priors in the tool, but that it 
is a challenge to present them and provide support for the interpretation of the results 
(inappropriate priors can bias results). It is suggested that studies be made to look at how the 
results from different priors compared and to hopefully serve as a basis for guidance. 

Regarding the BDA/AIHA prior bands, the group deemed them difficult to use to elicit a prior 
from users (“uneven broad categories”, based on unfamiliar parameters, P95). It was judged 
that users are better at estimating central tendencies. This scheme might be useful to present 
results, but seems less interesting as a way to elicit good priors. 

4. DISCUSSION AROUND SMALL DATASETS 

INRS states that an absolute minimal sample size of 3 is recommended in their guidelines. For 
samples smaller than 6, there is no calculation of distributional parameters; rather, the 
maximum of the series of value is compared to a fraction of the OEL. This approach relies on an 
a priori value for the GSD, not estimated from the data. 

It is remarked that for small sample sizes, confidence intervals based on frequentist calculation 
might not be reliable, which supports the idea of an alternative approach for these situations. It 
is underlined, however, that Bayesian credible intervals are not affected by this problem since 
uncertainty about the mean and standard deviation are fully taken into account in the priors. An 
approach based on a Bayesian framework would therefore not require treating very small 
datasets differently. 

5. DISCUSSION AROUND DISTRIBUTION FREE APPROACHES – ASSUMPTIONS ABOUT 
THE LOGNORMAL MODEL 

The consensus around this issue was that: 
− Hypothesis tests such as the Shapiro-Wilk test are not useful to evaluate whether the 

underlying distribution is lognormal: 

• They do not tell “how far” we are from the lognormal, or whether this departure has any 
consequence on the interpretation; 

• The distributional shape cannot be examined at “current” sample sizes (5-10); 

− For sample sizes below 20-30, the Q-Q plot is not very useful either; 

− Uncertainty bands on the Q-Q plot do not help as they will be influenced by extreme points 
to the extent that a very extreme deviation would be required for a point to fall outside. 

In conclusion, formal hypothesis tests will probably not be included in the WebExpo toolset. 
According to the statisticians in the group, it would not be useful either to try to study 
distributional shape using QQ plot below 30 points. Below this threshold, simpler plots can help 
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identify outliers. The choice of the distributional model would therefore be based on a priori 
decision (e.g., lognormal for airborne chemical exposures, normal for noise). QQ plot will 
probably be included, with warnings that they may not be very helpful at small values of n. 

Distribution free approaches were briefly discussed. It was mentioned that they would unlikely 
be useful at current sample sizes because of the significant loss of power. A simple sequential 
graph with different symbols for different workers would provide a nice summary and would help 
identify extreme values. 

6. DISCUSSIONS AROUND RISK COMMUNICATION 

Regarding the notion of sending different messages to different audiences, the group strongly 
agreed in favor of this proposal. Colleagues from INRS shared their experience of creating a 
quiz to select the complexity of the message based on answers. In retrospect they would not 
recommend the same approach for WebExpo. The group agreed that an approach of the kind 
“click here for a more detailed interpretation” would work well. This process should make sure 
that advanced users should not repeatedly have to make this selection. There was also a 
consensus that the tool should encourage people to want to get the most complex answer. The 
notion of a quiz was popular not for auto-selecting the complexity of the data interpretation 
results, but as a part of educational material. 

In terms of graphics to illustrate data interpretation results, illustration of exceedance with 
calendars with greyed out days was popular. Other suggestions included the density curve of 
the estimated distribution, even a cloud of lognormal density curves to reflect uncertainty. The 
type of graph should depend on the degree of understanding of the users (e.g., a density curve 
is not straightforward for many people). The group agreed that a “lognormal simulator” 
component would be a good thing for educational purposes. 

In terms of the diffusion of the algorithms developed, it was underlined that although a wiki page 
might work well for documents (e.g., examples, guidelines, educational material), it wasn’t likely 
to succeed for computer codes. Moreover, maintenance and updates of a wiki system require a 
regular source of funding (difficult to ensure here). The various algorithms will use only open 
access libraries, so that no issue will arise with their distribution and usage. Java versions of the 
algorithms will be produced, in part because colleagues from INRS plan to use them for the next 
iteration of their own data interpretation tool, ALTREX2. 
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ANNEXE B: 

TECHNICAL DOCUMENTATION OF THE BAYESIAN MODELS 
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ANNEXE C: 

RESULTS SPECIFIC TO THE NORMAL MODEL 

A. List of exposure metrics calculated for the normal distribution in the WebExpo project 

Table C1: Exposure metrics calculated for the normal distribution in the WebExpo project 

SEG analysis 

Distributional parameter estimates (point estimate and credible intervals)  
Arithmetic mean  
Arithmetic standard deviation  
Exceedance fraction of the OEL  
Percentile of the exposure distribution (i.e., critical percentile, default 95%) 

Decision on Exposure Acceptability (overexposure risk) 
Probability that exceedance fraction ≥ exceedance threshold (default 5%) 
Probability that critical percentile (default 95%) ≥ OEL 
Probability that arithmetic mean ≥ OEL 

Between-worker differences 

Distributional parameter estimates (point estimate and credible intervals) 

Group arithmetic mean 
Within-worker arithmetic standard deviation 
Between-worker arithmetic standard deviation 
Within-worker correlation coefficient (rho) 

Probability that rho is ≥ threshold (Prob.rho.overX)  
R difference (R.diff) 

Parameters quantifying the possibility that some workers are overexposed (probability of individual overexposure) 

Proportion of workers with their individual critical percentile ≥ OEL (Prob.ind.overexpo.perc) 
Proportion of workers with their individual arithmetic mean ≥ OEL (Prob.ind.overexpo.am)  
Probability that the true value for Prob.ind.overexpo.perc is above a threshold (Prob.ind.overexpo.perc.overX, default 
20%) 
Probability that the true value for Prob.ind.overexpo.am is above a threshold (Prob.ind.overexpo.am.overX, default 
20%) 

For any individual worker : all metrics from the SEG analysis 

Customizable parameters 

Probability for credible intervals (default 90%) 
Exceedance threshold (5%)  
Critical percentile (default 95%) 
Threshold for the within-worker correlation coefficient (default 0.2)  

Coverage of the population for the R difference (default 80%) 
Threshold for the probability of Individual overexposure (default 20%) 
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B. Interpretation of the Bayesian model outputs – SEG analysis 

Figure C1 illustrates the data processing flow in the analysis for the normal distribution. For the 
normal model there is no pre-treatment of the observations prior to being processed by the 
Bayesian routines. Hence, users should specify the priors and measurement error in 
accordance with the scale of their quantity of interest. Default values for WebExpo were 
determined with noise exposure levels expressed in decibels (Appendix D). 

The output metrics include arithmetic mean, arithmetic standard deviation, exceedance fraction 
of the OEL, any percentile of the distribution (default 95%), obtained from the equations below. 

Arithmetic mean of the exposure distribution: 
𝑨𝑨𝑨𝑨 = 𝝁𝝁  (1) 

Arithmetic standard deviation of the exposure distribution: 
𝑨𝑨𝑨𝑨𝑨𝑨 = 𝝈𝝈 (2) 

Xth percentile of the exposure distribution: 

𝑷𝑷𝑷𝑷 = 𝝁𝝁 + Φ−1 (𝑿𝑿) ∗ 𝝈𝝈 (3) 

where Φ−1 is the inverse cumulative distribution function of the standard normal distribution. 

Exceedance fraction of the OEL: 

𝑭𝑭(%) = 𝟏𝟏𝟏𝟏𝟏𝟏 ∗ �𝟏𝟏 −𝚽𝚽�𝐎𝐎𝐎𝐎𝐎𝐎−𝛍𝛍
𝝈𝝈

�� (4) 

where Φ is the cumulative distribution function of the standard normal distribution. 
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Figure C1 – Data processing flow for the SEG analyses – Normal distribution. 

Example 

We present below an example of the analysis of a sample of size 9 coming from a normal 
distribution with true AM=80 and true ASD=5 (considering an OEL of 85) [sample.C1 in 
Appendix E]. Table C2 presents the results of the analysis using the Bayesian model for the 
normal distribution and an uninformative prior using default parameters (see Appendix D). The 
very narrow width of the credible intervals shown in Table C2 illustrates the much lower 
variability of the normal distribution used in this example, which would be a plausible noise 
exposure distribution, when compared to the lognormal distribution used to model 
environmental variability of chemical exposures. 

Table C2 – Exposure metrics point estimates and credible intervals for an example of 
Bayesian calculation for the normal model 

Parameter Point estimates and 90% credible interval 

Arithmetic mean 78.6 [ 76.9 - 80.4 ] 

Arithmetic standard deviation 3.01 [ 2.03 - 5.13 ] 

Exceedance fraction (%) 1.72 [ 0.0517 - 13.7 ] 

95th percentile 83.6 [ 81.4 - 87.6 ]  
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C. Interpretation of the Bayesian model outputs – Between-worker analysis 

Figure C2 illustrates the data processing flow in the analysis for the normal distribution. For the 
normal model (as for the normal SEG analysis model) there is no pre-treatment of the 
observations prior to the Bayesian routines. Hence, users should specify the priors and 
measurement error in accordance to the scale of their quantity of interest. Default values for 
WebExpo were determined with noise exposure levels expressed in decibels (Appendix D). 

The following equations for normal exposure metrics were derived by adapting the lognormal 
equations above. 

Group arithmetic mean: 
𝑨𝑨𝑨𝑨𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈 = 𝝁𝝁𝒀𝒀  (5) 

Between-worker arithmetic standard deviation: 
𝑨𝑨𝑨𝑨𝑨𝑨𝒃𝒃 = 𝝈𝝈𝒃𝒃 (6) 

Within-worker arithmetic standard deviation: 
𝑨𝑨𝑨𝑨𝑨𝑨𝒘𝒘 = 𝝈𝝈𝒘𝒘 (7) 

Within-worker correlation coefficient: 

𝝆𝝆 =  𝝈𝝈𝒃𝒃
𝟐𝟐

𝝈𝝈𝒃𝒃
𝟐𝟐+𝝈𝝈𝒘𝒘𝟐𝟐

 (8) 

RX% difference: Relative distance, expressed as a % of the group arithmetic mean, containing 
the middle X% of the distribution of either worker specific arithmetic means or any percentile. 
This proposal represents an attempt at expressing heterogeneity in a similar way as the R ratio 
for the lognormal model, adapted to the normal scale. Our proposed default value for X is 80%. 

 

𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑿𝑿% =
𝟏𝟏𝟏𝟏𝟏𝟏∗�𝟐𝟐∗𝜱𝜱−𝟏𝟏�𝟏𝟏+𝑿𝑿𝟐𝟐 �∗𝝈𝝈𝒃𝒃�

𝑨𝑨𝑨𝑨𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈
 (9) 

Probability that a single random worker would have his own arithmetic mean above the OEL: 

 

𝑷𝑷𝒊𝒊𝒊𝒊𝒊𝒊𝑴𝑴𝑴𝑴(%) = 𝟏𝟏𝟏𝟏𝟏𝟏 ∗ �𝟏𝟏 −𝚽𝚽�
𝐕𝐕𝐕𝐕𝐕𝐕𝐕𝐕 − 𝝁𝝁𝒀𝒀

𝝈𝝈𝒃𝒃
�� 

 (10) 

Probability that a single random worker would have his own Xth percentile above the OEL (this is 
equivalent to the probability that a single random worker would have his own exceedance of the 
OEL above (100-X)%: 

𝑷𝑷𝒊𝒊𝒊𝒊𝒊𝒊𝑷𝑷𝑷𝑷 (%) = 𝟏𝟏𝟏𝟏𝟏𝟏 ∗ �𝟏𝟏 −𝚽𝚽�𝐎𝐎𝐎𝐎𝐎𝐎−�𝝁𝝁𝒀𝒀+𝚽𝚽
−𝟏𝟏(𝑿𝑿)∗𝝈𝝈𝒘𝒘�

𝝈𝝈𝒃𝒃
�� (11) 
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In addition to the above, it is also possible to obtain metrics specific to any individual exposure 
distribution. Hence by definition the exposure distribution for worker i is defined by: 
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Arithmetic mean of the exposure distribution: 

𝑨𝑨𝑨𝑨 = 𝝁𝝁𝒀𝒀 + 𝒃𝒃𝒊𝒊  (12) 

Arithmetic standard deviation of the exposure distribution: 

𝑨𝑨𝑨𝑨𝑨𝑨 = 𝝈𝝈𝒘𝒘 (13) 

Xth percentile of the exposure distribution: 

𝑷𝑷𝑷𝑷 = 𝝁𝝁𝒀𝒀 + 𝒃𝒃𝒊𝒊 + 𝚽𝚽−𝟏𝟏(𝑿𝑿) ∗ 𝝈𝝈𝒘𝒘  (14) 

where Φ−1 is the inverse cumulative distribution function of the standard normal distribution. 

Exceedance fraction of the OEL: 

𝑭𝑭(%) = 𝟏𝟏𝟏𝟏𝟏𝟏 ∗ �𝟏𝟏 −𝚽𝚽�𝐎𝐎𝐎𝐎𝐎𝐎−𝛍𝛍𝒀𝒀−𝒃𝒃𝒊𝒊
𝝈𝝈𝒘𝒘

��  (15) 

where Φ is the cumulative distribution function of the standard normal distribution. 

 
Figure C2 – Data processing flow for the between-worker difference analyses – Normal 

distribution. 
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Example 

We present an example of the analysis of a sample of size 100 (ten repeats with ten workers) 
coming from a normal distribution with true AM=80 and true group ASD=5 [sample.C2 in 
Appendix E]. Without empirical information on realistic values for within-worker correlation, we 
used the median value found for chemicals in the Kromhout et al. database: rho=0.22. Table 11 
presents the results of the analysis. As observed for the SEG analysis in 4.2.1.6, credible 
intervals shown in Table C3 are narrower than those for the lognormal case. For this example 
we assume no measurement error and we run the calculations with the [Between worker 
differences.informedvar] model implemented in R + RJAGS (see 4.3). 

Table C3: Exposure metrics point estimates and credible intervals for an example of 
Bayesian calculation for the normal model (between-worker difference analyses) 

Parameter Low within-worker correlation 

Arithmetic mean (90% CrI) 80.8 [ 78.8 - 82.7 ] 
Between-worker arithmetic standard deviation (90% CrI) 3.17 [ 2.02 - 5.16 ] 
Within-worker arithmetic standard deviation (90% CrI) 4.37 [ 3.88 - 4.96 ] 
Within-worker correlation (rho) (90% CrI) 0.345 [ 0.166 - 0.591 ]  
Probability that rho>0.2 90% 
R.difference (90% CrI) 10 [ 6.4 - 16.4 ] 
Probability of individual overexposure (95th percentile) in % (90% CrI) 82.7 [ 59.1 - 96.8 ]  
Chances that the above probability is >20% 100% 
Probability of individual overexposure (95th percentile) in % (90% CrI) 8.81 [ 1.01 - 29 ]  
Chances that the above probability is >20% 15% 
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ANNEXE D: 
INPUT PARAMETERS FOR THE BAYESIAN MODELS IN WEBEXPO 

General data input instructions for all models 

While in theory the Bayesian models can take as low as zero observation as input, in which 
case the posterior distributions will simply replicate the priors, we propose a “reasonable” 
minimal input as 3 uncensored results, with uncensored results representing at least 30% of the 
total sample. 

For the lognormal models, the data should be strictly positive and between OEL/1000 and 
1000*OEL. While being informal technical limits, these bounds are compatible with the 
proposed default parameters presented below for the Bayesian functions 

For the Normal models, the data should be positive and away from zero due to the 
measurement error model. Based on noise data expressed in decibels, we propose that values 
should be between 40 and 140. 

Uncensored observations should be entered as numbers, left censored observations as <X, 
right censored observations as >X, and interval censored observations as [X1-X2]. 

A. SEG.informedvar (including past.data model)
Parameter Default recommendation Reasonable range 
n.chain(A) 1 1-5
n.iter 25 000 10000-100000 
n.burnin 5000 100-5000
n.thin(B) 1 1 
mu.lower Lognormal : -20 

Normal : 40 

Lognormal : [-100 ; -0.5] and < min(observations) 

Normal (dB) : [20-85] et < min(observations) 
mu.upper Lognormal : 20 

Normal (dB) : 125 

Lognormal : [0.5 ; 100] and > max(observations) 

Normal (dB) : [85-140] et > max(observations) 
log.sigma.mu Lognormal : -0.1744 (GM=0.84) 

Normal : 1.098612 (GM=3) 

Lognormal 
GM for the lognormal distribution of log(GSD) values is 
between 0.405 and 1.609, corresponds to 
log.sigma.mu between -0.90 and 0.48 

Normal 
GM for the lognormal distribution of sigma is between 0.5 
and 10, corresponds to log.sigma.mu between -0.69 and 
2.30 
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Parameter Default recommendation Reasonable range  
log.sigma.prec 
 
 

Lognormal : 2.5523 
 
Normal : 1.191059 

Lognormal 
GSD for the lognormal distribution of log(GSD) values is 
between 1.5 and 5, corresponds to 
log.sigma.prec between 0.40 and 6.0 
 
Normal 
GSD for the lognormal distribution of sigma is between 
1.5 and 5, corresponds to 
log.sigma.prec between 0.40 and 6.0 

init.mu Lognormal : log(0.3) 
 
Normal : 85 

Lognormal 
Between OEL/1000 and 100*OEL (init.mu between -
6.908 and 4.605) 
 
Normal 
Between 50 and 120dB (init.mu between 50 and 120) 

init.sigma Lognormal : log(2.5) 
 
Normal : 3 

Lognormal 
GSD between 1.5 and 10 (init.sigma between 0.405  and 
2.303) 
 
Normal 
Sigma between 0.5 and 10 (init.sigma between 0.5 and 
10) 

past.data 
(mean) 

N.A. Lognormal 
Between OEL/1000 and 100*OEL (mean between -6.908 
and 4.605) 
 
Normal 
Between 50 and 120dB (mean between 50 and 120) 

past.data (sd) N.A. Lognormal 
GSD between 1.5 and 10 (sd between 0.405  and 2.303) 
 
Normal 
Sigma between 0.5 and 10 (sd between 0.5 and 10) 

past.data (n) N.A. 1-1000 
me.sd.range N.A. Lognormal 

0.001-1 (meaning between OEL/1000 and OEL) 
 
Normal 
0.1-10 
 

cv.range N.A. 0.01-2 (meaning between 1 and 200%) 

(A) While the number of MCMC chains is a parameter in the R code functions created by the McGill team, the relative 
simplicity of the models does not warrant multiple chains. Therefore in all other functions and in all other algorithms, 
this parameter is fixed to 1. 

(B) Similar to note A, the thinning factor is set to 1 in all algorithms except for the R functions. 
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B. SEG.uninformative (restricted to parameters not described in A)  
Parameter Default recommendation Reasonable range  
sd.range Lognormal 

GSD between 1.1 and 10 
sd.range=[0.095-2.3] 
 
Normal 
ASD between 0.1 and 20 db  
sd.range=[0.1-20] 

Lognormal 
GSD between 1.01 and 20 
sd.range included in [0.01-3] 
 
Normal 
ASD between 0.1 and 100dB 
sd.range included in [0.1-100] 

Init.sd Lognormal : log(2.5) 
 
Normal : 3 

Lognormal 
GSD between 1.5 and 10 (init.sd between 0.405  and 
2.303) 
 
Normal 
Sigma between 0.5 and 10 (init.sd between 0.5 and 10) 

 

C. SEG.riskband (restricted to parameters not described in A)  
Parameter Default recommendation Reasonable range  
A  
(break points defining the 
bands) 

Lognormal (AIHA bands) 
0.01/0.1/0.5/1 
 
Normal 
70/80/85/90 

Increasing values from 0.001 to 100. 

target_perc  
(percentile of the 
distribution used to define 
the prior probabilities on the 
bands) 

95 (95th percentile) 1-99 

region.prior.prob  
(prior probabilities for each 
band) 

0.2/0.2/0.2/0.2/0.2 Any values between 0 and 1, provided the 
sum is 1 

mu.lower.riskb See mu.lower section A. See mu.lower section A. 
mu.upper.riskb See mu.upper section A. See mu.upper section A. 
sigma.lower See sd.range section B. See sd.range section B. 
sigma.upper See sd.range section B. See sd.range section B. 
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D. Between.worker differences 

Constraints on observations are similar to the SEG functions. In addition, we recommend 
inputting at least 3 workers with at least 2 measurements each. Not all workers need to have 
repeated measurements. Note that the uncertainty surrounding worker specific exposure 
estimates will be directly related to the number of measurements for the worker of interest. 
 

Parameter Default recommendation Reasonable range  
n.iter 50 000 15000-200000 
n.burnin 5000 500-10000 
mu.overall.lower Lognormal : -20 

 
Normal : 40 

Lognormal : [-100 ; -0.5] and < min(observations) 
 
Normal (dB) : [20-85] and < min(observations) 

mu.overall.upper Lognormal : 20 
 
Normal (dB) : 125   

Lognormal : [0.5 ; 100] and > max(observations) 
 
Normal (dB) : [85-140] and > max(observations) 

log.sigma.between.mu Lognormal : -0.8786 
(GM=0.415) 
 
Normal : 1.098612 (GM=3) 

Lognormal 
GM for the lognormal distribution of log(GSD) values 
is between 0.105 and 1.609, corresponds to 
log.sigma.between.mu between -2.25 and 0.48 
 
Normal 
GM for the lognormal distribution of sigma is 
between 0.1 and 10, corresponds to 
log.sigma.between.mu between -2.30 and 2.30 

log.sigma. 
between.prec 
 
 

Lognormal : 1.634 
 
Normal : 1.191059 

Lognormal 
GSD for the lognormal distribution of log(GSD) 
values is between 1.5 and 5, corresponds to 
log.sigma. between.prec between 0.40 and 6.0 
 
Normal 
GSD for the lognormal distribution of sigma is 
between 1.5 and 5, corresponds to 
log.sigma. between.prec between 0.40 and 6.0 

log.sigma.within.mu Lognormal : -0.4106 
(GM=0.415) 
 
Normal : 1.098612 (GM=3) 

Lognormal 
GM for the lognormal distribution of log(GSD) values 
is between 0.405 and 1.609, corresponds to 
log.sigma.mu between -0.90 and 0.48 
 
Normal 
GM for the lognormal distribution of sigma is 
between 0.5 and 10, corresponds to 
log.sigma.within.mu between -0.69 and 2.30 
 

log.sigma. within.prec 
 
 

Lognormal : 1.9002 
 
Normal : 1.191059 

Lognormal 
GSD for the lognormal distribution of log(GSD) 
values is between 1.5 and 5, corresponds to 
log.sigma. within.prec between 0.40 and 6.0 
Normal 
GSD for the lognormal distribution of sigma is 
between 1.5 and 5, corresponds to 
log.sigma. within.prec between 0.40 and 6.0  
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Parameter Default recommendation Reasonable range  
init.mu.overall Lognormal : log(0.3) 

 
Normal : 85 

Lognormal 
Between OEL/1000 and 100*OEL (init.mu.overall 
between -6.908 and 4.605) 
 
Normal 
Between 50 and 120dB (init.mu.overall between 50 
and 120) 

init.sigma.between 
 

Lognormal : log(2.5)=0.916 
 
Normal : 3 

Lognormal 
GSD between 1.1 and 10 (init.sigma.between 
between 0.095  and 2.303) 
 
Normal 
Sigma between 0.5 and 10 (init.sigma.between 
between 0.5 and 10) 

init.sigma.within Lognormal : log(2.5)=0.916 
 
Normal : 3 

Lognormal 
GSD between 1.1 and 10 (init.sigma. within 
between 0.095  and 2.303) 
 
Normal 
Sigma between 0.5 and 10 (init.sigma. within 
between 0.5 and 10) 

Sigma.between.range Lognormal 
GSD between 1.00 and 10 
Sigma.between.range=[0-2.3] 
 
Normal 
ASD between 0 and 20 db  
Sigma.between.range=[0-20] 

Lognormal 
GSD between 1.0 and 20 
Sigma.between.range included in [0.00-3] 
 
Normal 
ASD between 0 and 100db 
Sigma.between.range included in [0-100] 

Sigma.within.range Lognormal 
GSD between 1.1 and 10 
Sigma.within.range=[0.095-2.3] 
 
Normal 
ASD between 0.1 and 20 db  
Sigma.within.range=[0.1-20] 

Lognormal 
GSD between 1.01 and 20 
Sigma.within.range included in [0.01-3] 
 
Normal 
ASD between 0.1 and 100db 
Sigma.within.range included in [0.1-100] 

me.sd.range N.A. Normal 
0.1-10 
 
Lognormal 
0.001-1 (meaning between OEL/1000 and OEL) 

cv.range N.A. 0.01-2 (meaning between 1% and 200%) 
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ANNEXE E: 
SAMPLES USED FOR THE NUMERICAL EXAMPLES 

Sample 1: SEG analysis - main example 
24.7 64.1 13.8 43.7 19.9 133 32.1 15 53.7 

Sample 2: SEG analysis - measurement error example 
96.6 38.3 80.8 15.1 34 73.4 14.5 64.8 27.4 48.7 
43.3 43.4 57.8 94.9 44.1 44.3 62.9 117 51.6 64.7 
50.1 74.7 221 46.8 84.3 93.4 126 46.9 29.5 73.8 
66.9 61.3 30.2 101 22.6 191 29.3 68 114 33.7 
52.5 118 49.7 60.4 36.6 55.9 31.9 84.3 75.8 39.5 
28.3 56.5 44.2 48 36.6 70 37 72 48 66.1 
72.4 80.9 69.1 162 67.3 75.2 40.5 25.6 44 120 
56.3 42.9 6.63 24.9 40.9 81 97.2 74.7 79.6 48.8 
75.3 54.8 66.5 71.3 28.7 87.5 51.9 19.6 60.8 45.9 
46.9 84.8 120 103 36.7 92.7 32.8 73.8 214 65.3 

Sample 3: Between-worker differences – low within-worker correlation 
worker-

1 
worker-

2 
worker-

3 
worker-

4 
worker-

5 
worker-

6 
worker-

7 
worker-

8 
worker-

9 
worker-

10 
185 4.79 8.85 16.4 14.7 37.9 22 69.9 28.1 113 
34.8 23 31.7 6.91 59.6 96.9 44.8 30.5 7.49 7.68 
16.7 7.54 15.8 87.4 15 40.8 37.5 33.4 16 85.6 
12.4 62.3 89.6 20 21.8 106 16.6 53 23 196 
18.6 8.55 164 16.8 20.6 21.7 30.7 70.7 99.9 35 
47.4 9.28 40.5 7.12 96.1 25.8 7.07 78.3 12 17.6 
52.6 43.6 47.6 6.99 16.8 51.3 7.18 18 11.8 60.7 
15.3 94.2 75.5 16.4 15.8 23 80.9 45.2 57.4 15.5 
27.6 44.6 10.7 12.6 8.02 18.9 44.5 51.4 8.79 34.3 
26.3 66.6 62.3 63.9 26.7 20.2 135 33.7 24 12.1 
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Sample 4: Between-worker differences – high within-worker correlation 
worker-

1 
worker-

2 
worker-

3 
worker-

4 
worker-

5 
worker-

6 
worker-

7 
worker-

8 
worker-

9 
worker-

10 
66.8 14.2 186 23.5 43.8 41 6.56 9.21 19.6 78.7 
46 53.9 84.6 16.2 31.1 11.4 9.5 9.42 14.3 28.2 

61.1 21.8 94.4 40.2 13.1 4.44 6.97 28.7 22.8 41.3 
54.6 47.8 218 130 24.1 12.9 5.92 72.9 35.1 14.4 
31.7 48.8 189 42.2 27.7 22.7 2.42 35.6 28.9 72.9 
74.3 76.5 130 25.7 23.9 20.5 14 17.2 36.9 10.2 
60.9 41.3 107 35.4 40.2 12.6 12.3 20.2 13 16.2 
53.4 20.4 80.6 40.8 60.3 8.35 3.07 13.4 13.3 15.8 
38.9 31.9 288 109 29.8 13.6 7.01 10.5 13.6 42.2 
27.5 31.1 173 40.9 37.2 28.1 6.49 26.3 37 61 

 

Sample 5: Between-worker differences – realistic sample size 
worker-1 worker-1 worker-1 worker-1 worker-2 worker-2 

31 60.1 133 27.1 61.1 5.27 
worker-2 worker-2 worker-3 worker-3 worker-3 worker-3 

30.4 31.7 20.5 16.5 15.5 71.5 

 

Sample 6: Variability of results across calculation platforms 
<25.7 17.1 168 85.3 66.4 <49.8 33.2 <24.4 38.3 

 

Sample C1: SEG analysis – normal sample 
81 79.5 80.7 78.1 80.1 74.8 74.8 79.8 79.8 
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Sample C2: Between-worker differences – normal sample 
worker-

1 
worker-

2 
worker-

3 
worker-

4 
worker-

5 
worker-

6 
worker-

7 
worker-

8 
worker-

9 
worker-

10 
76.2 70.6 79.2 79.1 85.3 77.8 79.1 80 80 89.1 
82.3 78.7 77.7 77.6 92.2 89 80.7 76.6 81.2 85.4 
81.7 77.6 73.5 81.2 75.8 81.9 85.8 84.6 73.8 81.8 
73.7 76.9 78.9 82.6 84.1 80.4 84.8 77.1 80.7 88.1 
79.4 79.5 81.6 81.6 76.1 88.5 88.5 81.5 76.9 86.4 
79.1 84.8 83.1 82.4 84.6 87 82.6 77.4 77.5 81.6 
80.2 77.6 85.1 76.9 78.9 85 78.6 73.5 74.6 86.8 
71 65.5 84.2 87.6 75.8 88.1 90.1 82.2 70.6 81.4 

86.9 74.1 79.8 80.4 89 81.3 82.9 74.4 82.3 86.7 
75.6 69.9 84.1 79.7 87.1 90.6 83 77.6 66.4 83.6 
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