Étude de cas d'amélioration ergonomique des outils présentant des risques d'atteintes musculo-squelettiques

RECHERCHE ET ÉTUDES RAPPORT

Georges Doulouze
Yves Beauchamp
L’Institut de recherche en santé et en sécurité du travail du Québec (IRSST) est un organisme de recherche scientifique voué à l’identification et à l’élimination à la source des dangers professionnels, et à la réadaptation des travailleurs qui en sont victimes. Financé par la CSST, l’Institut réalise et finance, par subvention ou contrats, des recherches qui visent à réduire les coûts humains et financiers occasionnés par les accidents de travail et les maladies professionnelles.

Pour tout connaître de l’actualité de la recherche menée ou financée par l’IRSST, abonnez-vous gratuitement au magazine Prévention au travail, publié conjointement par la CSST et l’Institut.

Les résultats des travaux de l’Institut sont présentés dans une série de publications, disponibles sur demande à la Direction des communications.

Il est possible de se procurer le catalogue des publications de l’Institut et de s’abonner à Prévention au travail en écrivant à l’adresse au bas de cette page.

ATTENTION

Cette version numérique vous est offerte à titre d’information seulement. Bien que tout ait été mis en œuvre pour préservar la qualité des documents lors du transfert numérique, il se peut que certains caractères aient été omis, altérés ou effacés. Les données contenues dans les tableaux et graphiques doivent être vérifiées à l’aide de la version papier avant utilisation.

Dépôt légal
Bibliothèque nationale du Québec

IRSST - Direction des communications
505, boul. de Maisonneuve Ouest
Montréal (Québec)
H3A 3C2
Téléphone : (514) 288-1551
Télécopieur: (514) 288-7636
Site internet : www.irsst.qc.ca
© Institut de recherche en santé et en sécurité du travail du Québec,
Étude de cas
d’amélioration ergonomique
des outils présentant
des risques d’atteintes
musculo-squelettiques

Georges Toulouse, Programme sécurité-ergonomie, IRSST
Yves Beauchamp, École de technologie supérieure

Avec la collaboration de :
Martin Brasseur, École de technologie supérieure

Cliquez recherche
www.irsst.qc.ca

Cette publication est disponible gratuitement en version PDF sur le site internet de l’IRSST.

Cette étude a été financée par l’IRSST. Les conclusions et recommandations sont celles des auteurs.
Table des matières

1. **Introduction** ... 1
2. **Problématique d'intégration de l'ergonomie à un processus d'amélioration ergonomique des outils en entreprise** ... 1
 2.1 La correction des risques de TMS engendrés par l’utilisation des outils ... 1
 2.2 L’intégration de l’ergonomie au processus d’amélioration d’outils en entreprise 2
 2.3 Objectif ... 5
3. **Présentation de l’entreprise et du département de coulage** .. 5
 3.1 Généralité .. 5
 3.2 Choix d’un département ... 5
 3.3 Simple coulée versus double coulée .. 5
4. **Protocole d'amélioration ergonomique des outils en entreprise** ... 6
5. **Méthodologie** .. 9
6. **Résultats** ... 13
 6.1 Identification et documentation du problème .. 14
 6.2 Choix des outils à améliorer .. 25
 6.3 Réalisation d’un premier prototype pour l’outil à percer .. 28
 6.4 Présentation du premier prototype au comité de travail .. 28
 6.5 Réalisation d’un second prototype pour l’outil à percer .. 29
 6.6 Présentation du second prototype au comité de travail ... 30
 6.7 Réalisation finale du système (outil, support-guide, gabarit et mode d’appui) ... 31
 6.8 Transfert du système à l’entreprise ... 33
 6.9 Réalisation d’un serre-pièce .. 34
7. **Discussion** .. 34
 7.1 Les solutions technologiques pour réduire les risques de TMS ... 34
 7.2 L’adaptation de la démarche de design et l’intégration de l’ergonomie ... 35
 7.3 Le déroulement du processus social ... 36
8. **Conclusion** .. 37

Bibliographie .. 38
Liste des figures

Figure 1. Cadre conceptuel pour l’intégration des aspects ergonomiques, sociaux et de la conception ... 6
Figure 2. Modèle d’implication des différents partenaires de l’entreprise dans le cadre de l’application du protocole d’amélioration ergonomique des outils ... 7
Figure 3. Modèle réel d’implication des différents partenaires de l’entreprise dans le cadre de l’application du protocole .. 13
Figure 4. Représentation schématique du poste de travail double coulée 15
Figure 5. L’activité de travail au coulage des cuvettes de la double coulée 19
Figure 6. Pourcentage de perte de moules en fonction du nombre de pièces produites pour le modèle 3-415 .. 21
Figure 7. Pourcentage de perte de moules en fonction du nombre de pièces produites pour le modèle 3-143 .. 22
Figure 8. Pourcentage de perte vertes en fonction du nombre de pièces produites pour le modèle 3-415 ... 23
Figure 9. Pourcentage de perte vertes en fonction du nombre de pièces produites pour le modèle 3-143 ... 23
Figure 10. Schématisation des risques musculo-squelettiques à la double coulée des cuvettes ... 25
Figure 11. Outil présentement utilisé pour percer les trous dans les dessus des cuvettes .. 27
Figure 12. Utilisation de l’outil ... 27
Figure 13. Premier prototype de l’outil à percer avec son support-guide 28
Figure 14. Second prototype de l’outil à percer ... 29
Figure 15. Test du second prototype .. 30
Figure 16. Plan du prototype final de l’outil ... 31
Figure 17. Support-guide de l’outil ... 32
Figure 18. Appui du gabarit proposé par le département de moulage 32
Figure 19. Appui du gabarit proposé par l’équipe de recherche 33
Figure 20. Vue d’ensemble du système : outil, support-guide, gabarit et appui 33
Figure 21. Vue d’ensemble du nouveau serre-pièce ... 34
Liste des tableaux

Tableau 1. Statistiques cumulatives des accidents par département pour l’année 1996 (statistiques internes de l’entreprise) ... 9
Tableau 2. Regroupement des lésions pour l’année 1996 (statistiques internes de l’entreprise) .. 10
Tableau 3. Répartition des accidents au coulage, par type de production et par activités correspondantes (n=25) .. 16
Tableau 4. Répartition des accidents aux cuvettes, par sièges de la lésion (n=18) 17
Tableau 5. Priorité d’intervention sur les opérations aux cuvettes Sondage interne du 8 mars 1996 (n=16) .. 17
Tableau 6 Synthèse des contraintes musculo-squelettiques et de leur déterminants.. 20
Tableau 7 Pourcentage de pertes vertes selon la nature du défaut pour le modèle 3-415 24
Tableau 8 Matrice d’aide à la décision pour le choix des outils à améliorer..................... 26
Remerciements

Nous tenons à remercier le personnel de la compagnie qui a participé à cette étude. Plus particulièrement son directeur et le représentant des travailleurs en santé et en sécurité du travail qui ont facilité sa réalisation, les différents coordonnateurs en santé et sécurité et le contremaître du département de coulage pour leur implication, le responsable du contrôle de la qualité qui nous a fourni les données sur ce sujet, le technicien du département de Recherche et de développement qui a participé à la conception du support pour l’outil et, bien sûr, les travailleurs du département de coulage qui nous ont apporté toutes leurs connaissances et savoir-faire et, aussi certains d’entre eux, qui ont collaboré étroitement pour mettre au point les prototypes.

Ces prototypes ont été conçus par Philippe Harpin, étudiant finissant au département de génie mécanique de l’ÉTS, que nous voudrions remercier pour ses compétences dans la conception des outils.
1. Introduction

Dans les tâches répétitives, l’utilisation des outils manuels peut s’accompagner d’efforts contribuant à la survenue de troubles musculo-squelettiques (TMS) (Leamon et Dempsey, 1995 ; Kaddefors et coll., 1993 ; Grant et Habes, 1993 ; Myers et Trent, 1988). En effet, les outils existant sur le marché ne sont pas toujours bien adaptés aux conditions d’utilisation présentes dans les entreprises. Aussi ces dernières sont amenées à faire concevoir ou modifier des outils par leur propre service technique ou par des concepteurs externes. Cependant, d’après nos expériences la conception ou la modification des outils n’aboutit pas toujours à des résultats satisfaisants concernant l’optimisation des exigences de qualité, de production, de santé et de sécurité au travail.

Ce problème, présent dans les entreprises à des degrés divers, a été peu étudié. Aussi, afin d’acquérir une expertise dans ce domaine, nous avons répondu favorablement à une demande d’aide du service de santé et de sécurité d’une poterie industrielle. Dans cette entreprise, différentes tentatives de modifications des outils pour réduire les risques musculo-squelettiques n’avaient pas abouti. Les solutions proposées par le service d’ingénierie basées sur l’automatisation de certaines fonctions s’avéraient trop coûteuses et difficiles à mettre en place. Par conséquent, nous avons proposé une démarche d’amélioration ergonomique des outils que l’entreprise a acceptée, mais qui a dû être adaptée dès le début du projet.

Dans le présent rapport nous présentons la problématique d’intégration de l’ergonomie à un processus d’amélioration ergonomique des outils en entreprise avec l’objectif de l’étude, l’entreprise et le département de coulage dans lequel s’est déroulé l’étude, le protocole d’amélioration ergonomique des outils en entreprise, la méthodologie, les résultats obtenus et une discussion ayant conduit à l’amélioration des outils.

2. Problématique d'intégration de l'ergonomie à un processus d'amélioration ergonomique des outils en entreprise

2.1 La correction des risques de TMS engendrés par l'utilisation des outils

Les actions correctrices permettant d’éliminer ou de réduire les sollicitations mécaniques excessives sur la structure musculo-squelettique lors de l’utilisation d’outil manuel requièrent des changements plus ou moins importants. Les solutions les plus radicales visent par l’automatisation ou la mécanisation à éliminer l’opération réalisée par le travailleur à l’aide de l’outil en la transférant à la machine. D’autres solutions, moins drastiques, tentent de résoudre le problème en modifiant l’outil et/ou les conditions de son utilisation.

L’automatisation pour éliminer les risques de TMS est proposée par certains chercheurs (Metsios et Graves, 1997 ; Putz-Anderson, 1988 ; Karwowski et coll., 1986). Cependant, ce type de solution, bien qu’intéressant, comporte des limites importantes, notamment pour les entreprises dont le procédé de production repose encore fortement sur les opérations manuelles des travailleurs. En effet pour ces entreprises, l’automatisation requiert des changements en profondeur du procédé de production souvent très complexes à réaliser et nécessitant des investissements financiers importants. En outre, l’automatisation n’est pas toujours suffisamment
complète ou fiable pour éviter toute intervention manuelle des travailleurs. Dans ce cas, elle peut contribuer à l’accroissement de la répétition de l’activité gestuelle associée à l’exercice de forces qui sollicitent des régions musculo-squelettiques plus petites (Putz-Anderson, 1988).

La mécanisation constitue également une solution visant à éliminer l’utilisation de l’outil (Moore, 1994). Elle permet de transférer à la machine les sollicitations mécaniques subies par le travailleur lors de l’utilisation de l’outil ou lors de manipulation directe de la matière première. Elle est généralement plus simple à mettre en place que l’automatisation. Cependant, elle nécessite également des modifications du procédé de production qui peuvent être complexes et coûteuses à réaliser.

La modification de l’outil permet de réduire les contraintes musculo-squelettiques soit par le transfert à l’outil d’opérations réalisées par le travailleur, soit par la modification du design de l’outil. Ces modifications peuvent supprimer ou réduire les postures contraignantes, les forces à exercer, les pressions mécaniques ou les vibrations. Elles demandent généralement pas ou peu de changement dans le procédé de production relativement à l’automatisation et à la mécanisation. Cependant, on ne peut présumer que ce type de solution plus simple à priori que l’automatisation ou la mécanisation ait plus de chance de réussir. En effet, la modification des outils intégrant l’ergonomie requiert la mise en œuvre d’une démarche de conception avec laquelle les entreprises ne sont pas toujours familières. Par ailleurs, il existe peu de recherches dans le domaine pour que les entreprises puissent y trouver des références utiles. Certains ergonomes commencent à peine à s’intéresser au processus de conception des outils commercialisés (Bobjør, O. et Jansson, C., 1997). Aussi, l’expérience montre que dans les entreprises, la démarche de conception pour modifier les outils afin de corriger des problèmes de santé et de sécurité est souvent mise en pratique de façon empirique et peut conduire à des échecs.

Dans le cadre de cette étude, le choix d'un protocole d’intégration de l’ergonomie au processus d'amélioration des outils s’appuie sur les connaissances existantes en ergonomie de conception de projets d’investissement et surtout en ergonomie participative.

2.2 L’intégration de l’ergonomie au processus d’amélioration d’outils en entreprise

L’intérêt en ergonomie pour les recherches concernant le processus de conception a débuté avec les interventions des ergonomes dans la réalisation de projets industriel ou d’investissement visant à concevoir de nouvelles installations, et avec le développement de l’ergonomie participative.

L’ergonomie participative\(^1\) qui vise l’implantation de solutions, a été amenée à incorporer des étapes de conception, car la résolution de nombreux problèmes de TMS demande des modifications techniques. L’intégration de l’ergonomie dans la conception s’y pose d’une façon différente des projets d'investissement. En effet, dans ces derniers la conception concerne une partie ou l’ensemble d’un système de production et de service, alors qu’en ergonomie participative, la conception est plus étroitement reliée à la correction d’un problème de santé et de sécurité. Toutefois, dans les deux cas le processus de conception nécessite la collaboration de différents partenaires. Elle se réalise au travers d’un processus social. Balka (1997) souligne que les démarches de design et d'ergonomie comportent toutes les deux un processus social et de communication.

Le processus social de la démarche de conception ou de modification des outils en entreprise, de la même façon que pour l’ergonomie participative, va s’articuler autour de la constitution d’un groupe de travail dans lequel participent des travailleurs, du personnel technique et des cadres de premier niveau et intermédiaire. La mise en place du groupe de travail et la définition de son mandat font l’objet d’une entente entre l’ergonome, les directions de l’entreprise et du syndicat.

Les connaissances acquises dans ce domaine en ergonomie participative vont être utiles dans une démarche d’amélioration des outils en entreprise. Toutefois, le processus social de la démarche d’ergonomie participative n’a pas fait véritablement l’objet d’étude scientifique spécifique, bien qu’il soit souvent mentionné comme un élément important de réussite. Les connaissances résultent davantage des expériences vécues par les ergonomes au cours des interventions d’ergonomie participative.

Le support des personnes de l’entreprise peut être influencé par des conditions extérieures à la démarche ou par les effets induits par son déroulement. Dans le premier cas, se retrouvent des conditions appartenant aux domaines économique, social et organisationnel de l’entreprise. Ces conditions extérieures à la démarche sont difficilement contrôlables par l’ergonome, si ce n’est au début de l’intervention dans le choix de s’engager ou non dans une démarche d’ergonomie participative et dans la détermination du mandat de l’intervention. Dans le second cas, ces sont les effets directs ou indirects de l’intervention elle-même qui peuvent modifier dans un sens ou dans l’autre le support des personnes de l’entreprise. L’ergonome dans la conduite de la démarche va rechercher à obtenir le soutien nécessaire des personnes de l’entreprise. Selon plusieurs auteurs,

\(^1\) Il existe en ergonomie différentes formes d’intervention participative. Le terme d’ergonomie participative est dans cette présentation réservée à l’intervention qui consiste à former les membres de l’entreprise composant un groupe de travail à l’étude ergonomique et à la résolution de problèmes spécifiques de SST, tels que les TMS.

D’après notre expérience, l’ergonome contribue à la démarche d’ergonomie participative à trois niveaux : 1- le choix et la mise en œuvre des méthodes nécessaires à la réalisation des différentes étapes de la démarche ; 2- les connaissances ergonomiques sur les critères d’évaluation des risques et de conception des solutions ; 3- le déroulement social de la démarche. Ces trois niveaux sont liés entre eux par l’objectif de trouver et d’implanter des solutions permettant de réduire les risques identifiés. L’atteinte de cet objectif nécessite que les solutions élaborées soient acceptables aussi bien pour les cadres que pour les travailleurs. Aussi, ces solutions doivent s’inscrire dans les possibilités concernant à la fois l’entreprise (finance, technologie, organisation, relation de travail) et la situation de travail (rendement, qualité, charge de travail, santé et sécurité, compétence des opérateurs).

Ainsi, la recherche de solutions applicables nécessite que soient articulées les spécifications concernant les risques à corriger, les exigences de la situation de travail et les possibilités de l’entreprise à réaliser des changements. Cette articulation est favorisée par l’ergonome durant le déroulement de la démarche à partir des méthodes de travail avec le groupe participatif et l’analyse ergonomique du travail. L’efficacité du travail en groupe s’obtient par l’utilisation d’une démarche structurée dans laquelle les membres peuvent s’exprimer pleinement et acquérir une compréhension contribuant à développer des consensus ou des convergences d’idées sur les risques de TMS et leurs solutions. L’analyse ergonomique du travail va favoriser cette compréhension en permettant aux membres du groupe de travail, non seulement d’identifier les risques de TMS, mais également de se constituer une représentation adéquate de l’activité des travailleurs. Cette dernière vise à cerner comment les travailleurs concilient ou non les exigences de rendement et de qualité avec la charge de travail et les risques à leur santé et sécurité. Elle fournit des références permettant d’imaginer, de discuter, de développer et de tester des idées de solutions. Dans cette dynamique d’élaboration de solutions, l’ergonomie se doit d’être présente à toutes les étapes de la démarche.

On peut supposer que la même nécessité va se retrouver dans la démarche de modification des outils en entreprise pour réduire les risques de TMS. La présence de l’ergonomie aux différentes étapes de la démarche de l’amélioration des outils implique que l’ergonome soit présent également lors du développement de la solution technique. À cette étape, l’apport de l’ergonomie n’est pas lié uniquement à la détermination de critères ergonomiques de conception, mais il contribue à la prise en compte des connaissances sur l’activité des travailleurs dans la recherche des meilleurs compromis de conception possibles entre les risques de TMS à éliminer, les problèmes de conception technique et les possibilités de changement dans l’entreprise.

Cette contribution de l’ergonomie se retrouve dans l’ergonomie de projet industriel, mais il n’existe pas d’exemple d’application dans la conception des outils en entreprise. Aussi, il a été décidé de réaliser un projet pilote permettant d’acquérir une expérience relative à l’amélioration ergonomique des outils en entreprise afin de réduire les risques de TMS. La démarche de conception s’appuie sur l’élaboration d’un modèle préalable qui serait appliqué dans l’entreprise. Ce modèle combine la démarche de conception avec l’implication sociale des différents
partenaires de l’entreprise et les ergonomes participant à la recherche. L’implication des différents partenaires a été déterminée avec l’entreprise participant à cette étude pilote.

2.3 Objectif

Ce projet a pour objectif principal d’aider une entreprise à améliorer les outils pour réduire les risques de TMS. Il va nous permettre d’acquérir une expérience pratique d’amélioration ergonomique des outils en entreprise.

3. Présentation de l'entreprise et du département de coulage

3.1 Généralité

La poterie industrielle participant à l’étude compte 179 employés à la fabrication et à l’expédition des produits. Une grande variété d’équipements sanitaires est fabriquée d’une façon traditionnelle. Le procédé requiert de nombreuses opérations manuelles aux diverses étapes de transformation : fabrication des moules, préparation de la barbotine\(^1\), coulage, séchage, finition, 1\(^{ère}\) cuisson, vaporisation, 2\(^{e}\) cuisson, emballage et expédition.

3.2 Choix d’un département

Le département de coulage a été proposé par le comité de santé et de sécurité de la compagnie par un large consensus. L’examen des statistiques de la Commission de la santé et sécurité du travail montre que 72\% des TMS déclarés proviennent de ce département. De plus, la moitié des lésions ont pour siège les membres supérieurs, tandis la région lombaire compte pour 22 \% des lésions rapportées. Les données statistiques disponibles dans l’entreprise sont trop agrégées pour effectuer une distinction entre les TMS déclarés comme accidents et les autres types d’accident. En effet, la grande majorité des TMS est déclarée et acceptée par la Commission de la santé et sécurité du travail comme accident du travail et non comme maladie professionnelle.

3.3 Simple coulée versus double coulée

La production des cuvettes est répartie selon les modèles en postes de travail de simple et de double coulée. La double coulée est réalisée sur des modèles de cuvette moins complexes qui nécessitent moins d’opérations que la simple coulée. Les postes de double coulée sont considérés comme étant plus difficiles en raison de la combinaison entre des opérations contraignantes physiquement et des contraintes de temps dues à la réalisation de deux coulées. La présente étude porte sur la double coulée des cuvettes.

\(^1\) Pâte délayée que l’on emploie pour les pièces en céramique se fabriquant par coulage.
4. Protocole d’amélioration ergonomique des outils en entreprise

Afin de faciliter dans l’entreprise le processus permettant d’aboutir à la réalisation efficace de l’amélioration ergonomique des outils, il apparaît nécessaire de proposer un démarche structurée qui à la fois, intègre dans le processus même de la conception la prise en compte des critères de santé et de sécurité et facilite la coordination entre les différents partenaires de l’entreprise. La figure 1 présente le cadre conceptuel de la démarche d’intégration des aspects ergonomiques, sociaux et de la conception où les connaissances ergonomiques sont intégrées à la méthodologie de conception au travers l’organisation sociale du travail, pour formaliser un protocole d’amélioration ergonomique des outils.

Figure 1. Cadre conceptuel pour l’intégration des aspects ergonomiques, sociaux et de la conception

La réalisation de ces étapes requiert l’implication de personnes de l’entreprise au travers leur participation à un groupe de travail ou d’activités en dehors du groupe variant selon le contenu des étapes. La coordination du projet est assurée conjointement par les chercheurs et un ingénieur du département de Génie conseil dont le mandat est de contribuer au développement des équipements. Cet ingénieur a déjà proposé des améliorations technologiques, mais celles-ci reposant sur l’automatisation, elles n’ont pas été retenues. Les propositions que nous avons faites d’aborder l’amélioration technologique à partir d’une évolution graduelle des outils l’ont intéressé. Le groupe de travail comprend également le représentant des travailleurs, le coordonnateur en SST, le contremaître du département concerné par la conception des outils et le responsable de la maintenance. Le lien avec la direction de l’entreprise est assuré par le coordonnateur de SST et l’ingénieur du service de Génie conseil.
Figure 2. Modèle d’implication des différents partenaires de l’entreprise dans le cadre de l’application du protocole d’amélioration ergonomique des outils
En plus de servir de référence de base à l’ensemble des étapes du protocole, le modèle d’implication des partenaires sera éventuellement ajusté durant la réalisation du projet afin de le rendre à la fois plus formel et opérationnel dans un contexte d’entreprise.

5. Méthodologie

La méthodologie proposée comporte les huit étapes suivantes :

1 : Identification et documentation du problème
2 : Détermination des spécifications
3 : Développement de concepts
4 : Examen approfondi des modifications
5 : Élaboration et évaluation d’un prototype
6 : Processus d’implantation
7 : Suivi et évaluation de la modification implantée
8 : Évaluation de l’ensemble du protocole

Dans cette section, nous présentons chacune des étapes du protocole ainsi que les données qui ont été recueillies lors de sa réalisation. Le protocole est dirigé par un comité de travail composé des chercheurs, du coordonnateur et du représentant en santé et sécurité de l’entreprise, d’un concepteur du département de génie conseil et, d’un contremaître et responsable de la maintenance. Par ailleurs, mentionnons que des comités de travail spécifiques ont été constitués à certaines étapes.

Étape 1 : Identification et documentation du problème

Objectif : permettre la détermination des priorités de choix des outils présentant des risques de TMS.

Méthodes : les informations sont recueillies et colligées par les chercheurs.
- consultation des données d’accidents ;
- enquêtes auprès des contremaîtres (entrevues, questionnaires) ;
- enquêtes auprès des travailleurs (questionnaires et observations) ;
- enquête auprès de la maintenance (entrevues) ;
- enquête auprès du génie conseil (entrevues).

Analyses : le risque de TMS est identifié à partir de la convergence de différentes sources d’information.
- tableaux synthèses selon les différentes sources d’information ;
- similitudes et différences relativement aux représentations des problèmes.

Restitution des résultats et prise de décision du groupe de travail.
• présentation et interprétation des tableaux synthèses, des similitudes et des différences de représentation des problèmes ;
• priorisation des outils à améliorer à partir des éléments de convergence tenant compte à la fois des risques de TMS et des objectifs du département de génie conseil.

Documentation de l’étape 1 par les chercheurs.
• nature, importance des similitudes et des différences des représentations des problèmes et de leurs interprétations ;
• critères sur lesquels sont établies les priorités ;
• nature de l’implication des intervenants.

Étape 2 : détermination des spécifications

Objectif : déterminer les spécifications de la conception.
Méthodes : informations recueillies par des intervenants et les chercheurs relativement aux tâches prescrites et réelles .
• exigences de production (spécification par rapport au procédé) ;
• exigences de qualité (spécification par rapport au procédé, nature du produit et de la matière première) ;
• exigences de la maintenance ;
• exigences relativement à l’activité des travailleurs et des facteurs de risque en santé et sécurité du travail.

Analyse : les informations sont analysées par les chercheurs.
• description des tâches prescrites et réelles.

Restitution des résultats et prise de décisions du comité de travail.
• présentation des tâches prescrites et réelles ;
• interprétation avec les intervenants des similitudes et des écarts entre tâches prescrites et réelles ;
• détermination des spécifications de la conception prenant en compte l’activité des travailleurs et des facteurs de risque en santé et sécurité du travail.

Documentation de l’étape 2 :
• nature des écarts entre tâches prescrites et réelles ;
• critères de détermination des spécifications de conception ;
• nature de l’implications des intervenants.

Étape 3 : développement des concepts

Objectif : énoncer des idées de modification.
Méthode : comité de travail spécifique de l’entreprise (e.g. concepteur du génie conseil, un responsable de la maintenance, un contremaître et deux travailleurs) .
• réunion de « brainstorming » animée par un des chercheurs.

Restitution des résultats
• présentation des idées de modification au comité de travail.

Documentation de l’étape 3 :
• nature des idées de modification ;
• déroulement et évaluation de la réunion ;
• nature de l’implication des intervenants.
Étape 4 : examen approfondi des modifications

Objectif : revoir les idées de modification et les étapes à franchir pour permettre leur réalisation.

Méthode : comité de travail de l’entreprise (e.g. personne du génie conseil, un responsable de la maintenance, un contremaître et deux travailleurs)

Analyse : Les informations sont analysées par le comité de travail.

Restitution des résultats :

Documentation de l’étape 4 :

• Idées de modification à approfondir ;
• nature des facteurs de succès et des barrières à la mise en œuvre du processus de réalisation des idées de modification ;
• déroulement et évaluation de la réunion ;
• nature de l’implication des intervenants.

Étape 5 : élaboration et évaluation d’un prototype

Objectif : tester les modifications pour vérifier si l’outil répond aux spécifications prévues.

Méthodes : personnes impliquées selon le cas : concepteur du génie conseil, responsable de la maintenance, contremaître, travailleurs.

Analyse : évaluation de l’atteinte des attentes.

Restitution des résultats au comité de travail :

Documentation de l’étape 5 :

• intérêt et difficultés rencontrés pour évaluer le prototype ;
• nature de l’implication des intervenants.

Étape 6 : processus d’implantation

Objectif : rendre opérationnel le nouvel outil.

Méthode : implantation de l’outil.

• application de la stratégie définie dans l’étape précédente
Analyse : évaluation de la stratégie d’implantation.
- comparaison de l’écart entre la stratégie planifiée et la stratégie employée.

Restitution des résultats au comité de travail :
- description et bilan de la stratégie d’implantation ;
- présentation du résultat du processus d’implantation au comité de travail.

Documentation de l’étape 6 :
- Vérification de l’application de la stratégie d’implantation, des écarts à la stratégie employée, des facteurs de succès et des barrières à l’application de la stratégie ;
- nature de l’implication des intervenants.

Étape 7 : suivi et évaluation de la modification implantée

Objectif : évaluation de l’utilisation de l’outil modifié après une certaine période d’utilisation.

Méthodes : données recueillies par les chercheurs.
- observations de l’activité des travailleurs lors de la réalisation de la tâche requérant l’outil modifié (évaluation des facteurs de risque) ;
- évaluation des impacts sur la production et la qualité ;
- entrevues avec les travailleurs.

Analyse : évaluation de l’efficacité de la modification apportée à l’outil.
- comparaison de l’utilisation de l’outil relativement aux spécifications prévues, dont plus particulièrement celles concernant la diminution des facteurs de risque de TMS.

Restitution des résultats :
- présentation de l’évaluation et interprétation ;
- nature de l’implication des intervenants.

Étape 8 : évaluation de l’ensemble du protocole

Objectif : dresser un bilan des facteurs de succès et les barrières à une maximisation de l’application du protocole.

Méthodes : données recueillies par les chercheurs.
- bilan issu de l’information traitée dans la documentation de chacune des étapes ;
- entrevues individuelles avec les intervenants, la direction et des travailleurs ;
- réunion du comité de travail.

Analyse : comparer les représentations des personnes de l’entreprise relativement à la démarche et à leur implication.

Restitution des résultats :
- présentation du bilan de l’application du protocole au comité de travail et à la direction de l’entreprise.
6. Résultats

Dès le début de l’étude, des modifications importantes sont survenues dans l’organisation interne de l’entreprise. En effet, plusieurs événements se sont succédé : départ de l’ingénieur de conception et son non remplacement ; changement de directeur d’usine ; changement à deux reprises du coordonnateur en santé et sécurité du travail ; ainsi que nouvelle affectation du contremaître au coulage. Ces divers changements ont eu pour conséquence d’affecter le rôle des intervenants dans le déroulement de l’étude, ainsi que les étapes de conception. Les étapes sont réduites de sept (7) à quatre (4) (voir figure 3), elles sont : 1) identification et documentation du problème ; 2) choix des outils à améliorer ; 3) conception d’un prototype ; 4) transfert de la conception finale et de l’implantation en entreprise. Le déroulement et le suivi du processus social ont dû être adaptés pour tenir compte de ces changements. Notamment, le rôle de coordination que devait jouer le département de génie conseil a dû être réalisé par les chercheurs eux-mêmes.

Figure 3. Modèle réel d’implication des différents partenaires de l’entreprise dans le cadre de l’application du protocole
Des ajustements ont été apportés au modèle d’implication des intervenants dans le cadre de l’application du protocole, tel que présenté initialement à la figure 2. Les résultats qui seront présentés correspondent à cette nouvelle structure, apparue au fur et à mesure de l’avancement de l’intervention.

6.1 Identification et documentation du problème

Dans le but de déterminer les priorités de choix des outils présentant des risques de TMS, nous avons procédé à une collecte systématique d’informations en provenance de plusieurs sources : consultation des données d’accidents ; consultation d’un sondage effectué par le génie conseil ; réalisation d’une enquête auprès des travailleurs de la double coulée ; observations des exigences du travail et des contraintes musculo-squelettiques ; étude de la qualité.

Aperçu du travail à la double coulée

La double coulée des cuvettes comporte une quinzaine de postes de travail. Le nombre de postes varie selon les commandes. Un travailleur occupe chaque poste. Les heures normales de travail sont de 6 h à 14 h. Le temps de pause dans le quart de travail se situe durant le séchage de la barbotine. Une coulée comporte les tâches suivantes : l’assemblage des moules, la coulée, le séchage, le démoulage et la reconstitution des moules, la finition du soir puis la finition du matin. Ces tâches se divisent en 125 sous-tâches comportant une à plusieurs opérations élémentaires pour chacune des 20 pièces à fabriquer. Elles sont partagées entre les différentes zones de travail, les coulées (finition de la 2e coulée de la veille, 1re et 2e coulée du quart) et les modèles du produit à certains postes. Les zones de travail se répartissent en quatre rangées : la première rangée est constituée par les moules servant à fabriquer le dessus des cuvettes ; la seconde rangée est formée des moules des cuvettes reposant sur un banc sur lequel sont posées les cuvettes après le démoulage afin d’effectuer l’ébarbage et une partie de la finition ; la quatrième rangée est formée par quatre (4) chariots qui servent à transporter les cuvettes aux postes d’inspection et de finition. Pour effectuer le travail les couleurs circulent entre les différentes rangées (voir figure 4).

2 Les termes tâche, sous-tâche et opération correspondent à un découpage du travail selon des étapes allant du plus général aux particulier. Ex. : la tâche de coulée comporte les sous-tâches telles que la pose des entonnoirs, le placement des becs verseurs, etc. la sous-tâche de pose des entonnoirs comporte telles les opérations de saisies des entonnoirs, de déplacement, etc.
Les outils à la disposition des couleurs sont les suivants : éponges et seaux, racloir, emporte-pièce, serre-pièces, « plume » avec un gabarit pour percer des trous, palan pour retirer le moule de dessus.

L’étude des structures d’âge de l’entreprise montre que la moyenne d’âge des couleurs faisant la double coulée est de 36 ans. Elle est moins élevée que la moyenne d’âge des travailleurs du département de coulage et de la production qui est de 40 ans. Plus importante encore est la différence concernant l’ancienneté dans l’entreprise dont la moyenne est de 7 ans pour les couleurs de la double coulée et de 16 ans pour les autres couleurs. Ces différences s’expliquent assez bien puisque le poste de double coulée sert à l’apprentissage du métier de couleur. Cette tâche a été choisie parce que d’une part, les pièces sont moins complexes à produire et, d’autre part, la charge de travail selon les couleurs est plus élevée. Par la suite, les couleurs plus anciens pourront postuler à d’autres postes.

Données d’accidents issues des statistiques internes de l’entreprise

Le tableau 1 présente une répartition des accidents au coulage en fonction du type de production et de l’activité correspondante pour les années 1995 à 1997. Ces données ont été validées par le comité de santé et de sécurité puis vérifiées par rapport au dossier de l’entreprise à la CSST. Au cours de cette période, près du trois quart des accidents sont survenus lors de la fabrication des cuvettes. Les étapes du transport, de la manipulation et du retournement des pièces ainsi que le démoulage, qui nécessitent un effort physique significatif, comptent pour une proportion...
importante (56 %) des accidents. Les autres accidents sont surtout reliés à l’exécution de mouvements répétitifs contraignants (e.g. perçage de trous et travail répétitif). Les membres supérieurs apparaissent principalement touchés dans les accidents survenus lors de la fabrication des cuvettes (tableau 2). Plus particulièrement, ces lésions ont pour siège les mains et les poignets. Par ailleurs, le dos, l’abdomen et le thorax sont également les sièges d’une proportion importante des lésions.

Tableau 1. Répartition des accidents au coulage, par type de production et par activités correspondantes (n=25) (1995 à 1997)

<table>
<thead>
<tr>
<th>Secteur</th>
<th>Nombre</th>
<th>Activité</th>
<th>Nombre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cuvettes (bols)</td>
<td></td>
<td>Transport, manipulation, retournage des pièces.</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Démoulage</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Perçage des trous</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Travail répétitif</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>non spécifié</td>
<td>2</td>
</tr>
<tr>
<td>Réservoirs</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lavabos</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urinoirs</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>25</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tableau 2. Répartition des accidents aux cuvettes, par sièges de la lésion (n=18) (1995 à 1997)

<table>
<thead>
<tr>
<th>Secteur</th>
<th>Nombre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Membres supérieurs</td>
<td>9</td>
</tr>
<tr>
<td>- mains et poignets</td>
<td>5</td>
</tr>
<tr>
<td>- épaules</td>
<td>2</td>
</tr>
<tr>
<td>- coudes</td>
<td>1</td>
</tr>
<tr>
<td>- siège inconnu</td>
<td>1</td>
</tr>
<tr>
<td>Dos</td>
<td>5</td>
</tr>
<tr>
<td>Abdomen et thorax</td>
<td>3</td>
</tr>
<tr>
<td>Membres inférieurs</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>18</td>
</tr>
</tbody>
</table>

Sondage effectué par le génie conseil

Au mois de mars 1996, le département du génie conseil a réalisé un sondage auprès des seize travailleurs affectés à la fabrication des cuvettes de la double coulée. L’objectif de ce sondage
était d’identifier les opérations jugées les plus problématiques pour les travailleurs afin de prioriser les interventions du génie conseil. Pour ce faire, les travailleurs devaient indiquer, sur un questionnaire anonyme, l’importance à accorder à l’élimination des mouvements et des efforts répétitifs.

Le tableau 3 présente les priorités d’intervention sur les opérations à la fabrication des cuvettes. À titre d’exemple, les travailleurs ont mentionné, dans une proportion de 69%, qu’il était « très important » d’éliminer les mouvements et les efforts répétitifs à l’opération de démoulage. Par ordre d’importance, ils ont identifié comme problématiques les opérations qui consistent à vider les bacs de barbotine, à percer les dessus de cuvettes et à procéder à la finition du matin, pour n’en nommer que quelques-unes.

Tableau 3. Priorité d’intervention sur les opérations aux cuvettes
Sondage interne du 8 mars 1996 (n=16)

<table>
<thead>
<tr>
<th>Opérations</th>
<th>Résultats (%)</th>
<th>Ordre de priorité</th>
</tr>
</thead>
<tbody>
<tr>
<td>Démoulage</td>
<td>Très important</td>
<td>69</td>
</tr>
<tr>
<td>Vider les bacs</td>
<td>important</td>
<td>31</td>
</tr>
<tr>
<td>Percer dessus des cuvettes</td>
<td>peu important</td>
<td>6</td>
</tr>
<tr>
<td>Finition du matin</td>
<td>pas important</td>
<td>12</td>
</tr>
<tr>
<td>Transfert dans les trucks</td>
<td>Très important</td>
<td>26</td>
</tr>
<tr>
<td>Transfert sur la table</td>
<td>important</td>
<td>44</td>
</tr>
<tr>
<td>«Topper»</td>
<td>peu important</td>
<td>12</td>
</tr>
<tr>
<td>Appliquer colle</td>
<td>pas important</td>
<td>12</td>
</tr>
<tr>
<td>Retourner moule</td>
<td>Très important</td>
<td>26</td>
</tr>
<tr>
<td>Démoulage des tops</td>
<td>important</td>
<td>31</td>
</tr>
<tr>
<td>Retirer le pied du moule</td>
<td>peu important</td>
<td>44</td>
</tr>
<tr>
<td>Basculer dessus des cuvettes</td>
<td>pas important</td>
<td>12</td>
</tr>
</tbody>
</table>

Enquête auprès des travailleurs de double coulée

Au mois de décembre 1997, une enquête a été effectuée auprès des travailleurs affectés à la double coulée des cuvettes. L’enquête a été réalisée sous la forme d’une série d’entrevues semi-dirigées à l’aide d’un questionnaire. Les informations recherchées étaient les suivantes : caractéristiques des travailleurs ; caractéristiques du travail effectué ; les douleurs dues au travail ; les propositions d’amélioration des outils et des équipements. Au total, 17 travailleurs ont été interviewés.

La très grande majorité des répondants (82%) rapportent qu’ils ressentent des douleurs musculosquelettiques quelques fois par mois (17 %), quelques fois par semaine (29 %) et tous les jours (35 %). 29 % de ces travailleurs affirment s’être déjà absentés à cause de douleurs. Pour la plupart d’entre eux, ces douleurs ont des conséquences à l’extérieur de leur travail.
De plus, 59 % répondants ont déjà déclaré au moins un accident, et 29 % d'entre-eux ont rapporté deux accidents et plus. Malgré que 65 % des répondants considèrent que certains modèles de cuvettes représentent un travail plus difficile, nous constatons que les accidents rapportés par les travailleurs se répartissaient de façon semblable entre les modèles 143 et 415.

Enfin, nous n’avons constaté aucune corrélation entre les accidents et les variables suivantes : l’âge, l’ancienneté comme couleur, l’ancienneté dans l’usine, l’ancienneté dans la fabrication d’un modèle spécifique.

__Les exigences concernant l’activité des opérateurs et les facteurs de risque en SST__

L’activité des travailleurs se caractérise par un nombre important de sous-tâches (au total 125) à réaliser sur chacune des 20 cuvettes. Celles-ci sont réalisées de façon synchrone entre les bancs de dessus des cuvettes, des cuvettes, de la finition, les chariots de finition et la préparation de la prochaine coulée. La figure 5 décrit les activités constituant la stratégie permettant de faire face aux contraintes de temps. Ces activités doivent être prises en considération dans l’élaboration des spécifications de la conception des outils. Elles vont être influencées par différents facteurs : la qualité de la barbotine, la qualité de la fabrication et le vieillissement des moules, la variation du nombre de moules par banc, la variation de l’état des outils, ainsi que par l’expérience et le travail d’équipe des travailleurs.

Le tableau 4 a été construit à partir des données recueillies par observation directe et vidéo. Les déterminants qui ne pouvaient pas être observés directement proviennent d’entrevues faites avec les travailleurs durant les périodes de pause. Ces derniers ont été validés lors de la présentation des résultats au groupe de travail. Les contraintes musculo-squelettiques sont définies relativement aux critères issus de méthodes d’identification des risques musculo-squelettiques concernant les pressions mécaniques, les forces exercées, les postures (Keyserling et coll., 1992 ; St-Vincent et coll. 1996).
Figure 5. Activités partagées à la double coulée des cuvettes

Activité partagée entre les sous-tâches

Le couleur commence plus tôt le matin pour faire les opérations de finition avant la première coulée.

Le couleur réalise certaines sous-tâches au cours d'un même passage.
- coule les moules et fait les bouchons ou assure une meilleure étanchéité; perce,
- contrôle la qualité et enlève les bavures.

Optimise son activité gestuelle
- place les outils ou le matériel aux mêmes endroits stratégiques,
- nettoie une éponge à chaque main,
- modifie son plan de travail suite à une interruption nécessitant son déplacement.

Alterne des sous-tâches plus faciles physiquement avec des sous-tâches plus faciles.
- démoulage/moulage avec finition.

Assiste immédiatement son collègue pour réaliser les sous-tâches nécessitant son aide.

Règle de gestion commune du palan
- amène le palan à son collègue après utilisation.

Nombre important de sous-tâches dans un temps donné

Synchronisation de sous-tâches entre :
le banc des tops,
le banc des cuvettes,
le banc de finition,
le chariot de finition,
la préparation de la prochaine coulée

Expérience, habileté du couleur à planifier et à modifier sa planification en fonction des variations de la tâche et de son état physique

Travail d'équipe

Qualité de la barbotine

Qualité de la fabrication et vieillissement des moules

Variation du nombre des moules par banc

Variation de l'état, des outils et des équipements
Tableau 4 Synthèse des contraintes musculo-squelettiques et de leur déterminants

<table>
<thead>
<tr>
<th>Sous-tâches</th>
<th>Contraintes musculo-squelettiques</th>
<th>Déterminants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manutention des cuvettes à la finition</td>
<td>- poids</td>
<td>- hauteur de saisie et de dépôt dans les chariots</td>
</tr>
<tr>
<td></td>
<td>- postures prises et dépôt dans truck</td>
<td>- fragilité du produit organisation de l’activité de finition par le travailleur, modèle de régulation de la charge de travail ?</td>
</tr>
<tr>
<td></td>
<td>- tenue de la pièce : contrôle de la pression à exercer sur la pièce pour la tenir (muscles fins)</td>
<td>- horaire d’été ?</td>
</tr>
<tr>
<td></td>
<td>- opérations faites tôt le matin au début du quart (absence de réchauffement mais aussi état physiologique plus fragile en raison des rythmes circadiens surtout en été)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- transport plus ou moins long du produit</td>
<td></td>
</tr>
<tr>
<td>Vidanger les bacs de récupération</td>
<td>- poids,</td>
<td>- processus de drainage et d’enlèvement de la barbotine</td>
</tr>
<tr>
<td></td>
<td>- postures : dos et poignet</td>
<td>- type de bac</td>
</tr>
<tr>
<td>Perçage des trous « tops rims »</td>
<td>- postures poignets : mouvements pronation-supination, flexion ; épaules : rotation, abduction et extention</td>
<td>- processus de perçage : design et fonction de l’outil, ouverture des trous sur le gabarit, variété de la glaise</td>
</tr>
<tr>
<td>Pose de la barbotine à couler</td>
<td>- effort pression main et avant-bras</td>
<td>- processus de collage, design et mode de fonctionnement de l’outil</td>
</tr>
<tr>
<td></td>
<td>- posture poignet : flexion doigts pliés</td>
<td>- Viscosité de la barbotine (qualité, temps d’attente de la barbotine dans les cônes)</td>
</tr>
<tr>
<td>Démoulage-remoulage</td>
<td>- poids</td>
<td>- processus de moulage et démoulage, qualité des moules (vieillissement, qualité séchage)</td>
</tr>
<tr>
<td></td>
<td>- postures de transfert et retournement des pièces (extension des bras et rotation épaule)</td>
<td>- organisation de l’activité de travail (alternance entre tâches démoulage-moulage et finition)</td>
</tr>
<tr>
<td></td>
<td>- manutention de la cuvette</td>
<td></td>
</tr>
<tr>
<td>Serrage des moules</td>
<td>- pressions et coups sur la paume des mains</td>
<td>- processus de serrage, design des pièces</td>
</tr>
<tr>
<td></td>
<td>- postures penchées lors de la pose</td>
<td>- méthode de serrage</td>
</tr>
<tr>
<td>Pose des « tops »</td>
<td>- pressions et coups sur la paume des mains</td>
<td>- méthode de travail</td>
</tr>
<tr>
<td>Finition des cuvettes (excédent, joint de moulage, cordons)</td>
<td>- postures : le dos penché parfois en flexion latérale, poignet en flexion</td>
<td>- hauteur de travail, contraintes visuelles (inspection)</td>
</tr>
</tbody>
</table>
Les exigences de production et de qualité

Les figures 6 et 7 montrent le pourcentage de perte de moules en fonction du nombre de pièces produites par chaque travailleur pour les modèles 3-415 et 3-143. Le nombre de travailleurs pour les modèles 3-415 et 3-143 est de respectivement 15 et 8 travailleurs pour une période d’une année. Il faut noter que le nombre de pièces produites pour un même modèle varie considérablement d’un travailleur à l’autre puisque certains travailleurs sont affectés à la production de modèles différents. Les travailleurs qui affichent une production nettement plus élevée sont réputés être principalement affectés aux modèles 3-415 ou 3-143.

Il est intéressant de constater que le pourcentage de perte de moules apparaît inversement proportionnel à la quantité de pièces produites par le travailleur. Puisqu’une quantité produite plus élevée est révélatrice d’une fabrication d’une meilleure qualité, il semble possible d’admettre que l’expérience sur un seul modèle puisse jouer un rôle important dans la qualité du travail effectué. Cela pourrait être lié à la complexité même de la tâche qui nécessite une maîtrise de nombreuses opérations.

Figure 6. Pourcentage de perte de moules en fonction du nombre de pièces produites pour le modèle 3-415.
Figure 7. Pourcentage de perte de moules en fonction du nombre de pièces produites pour le modèle 3-143.

Pour les pertes vertes, c’est-à-dire les pertes avant la 1ère cuisson, les figures 8 et 9 montrent des tendances similaires. Pour le modèle 3-415, à l’exception du travailleur #1, on observe que le niveau de qualité augmente en fonction du nombre de pièces produites de ce modèle. Le modèle 3-143, toutefois, montrent une plus grande variabilité entre les travailleurs, mais le niveau plus élevé de qualité est atteint par les travailleurs qui produisent davantage de pièces de ce modèle. L’expérience sur un modèle donné, encore une fois, semble influencer directement la qualité des pièces produites.

Le tableau 5 présente les pourcentages de pertes vertes selon la nature du défaut pour le modèle 3-415. Il est intéressant de constater que plus de 4 défauts sur 10 (42,3%) sont causés par la manutention. Les autres principales causes de défauts sont attribuées au démoulage (fissures, 12,7 %), à la finition du matin (mauvaise finition, 8 % ; impuretés, 7,4 %), ainsi qu’aux perçages du dessus des cuvettes (fissures du dessus du bol de toilette, 6,4 %). Ces opérations ont également été identifiées comme celles comportant des risques musculo-squelettiques. Il semble donc que les contraintes musculosquelettiques sont à l’origine de risques de TMS et de défauts de qualité sur les moules et les cuvettes.
Figure 8. Pourcentage de pertes vertes en fonction du nombre de pièces produites pour le modèle 3-415.

Figure 9. Pourcentage de pertes vertes en fonction du nombre de pièces produites pour le modèle 3-143.
Tableau 5 Pourcentage de pertes vertes selon la nature du défaut pour le modèle 3-415

<table>
<thead>
<tr>
<th>Nature du défaut</th>
<th>Pourcentage des pertes vertes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bris de manutention</td>
<td>42,3</td>
</tr>
<tr>
<td>Fissures</td>
<td>12,7</td>
</tr>
<tr>
<td>Mauvaise finition</td>
<td>8</td>
</tr>
<tr>
<td>Impureté</td>
<td>7,4</td>
</tr>
<tr>
<td>Fissures du dessus du bol</td>
<td>6,4</td>
</tr>
<tr>
<td>Destruction</td>
<td>4,5</td>
</tr>
<tr>
<td>Cavité</td>
<td>3,7</td>
</tr>
<tr>
<td>Fissures du tuyau</td>
<td>2,5</td>
</tr>
<tr>
<td>Fissures autour du drain</td>
<td>1,6</td>
</tr>
<tr>
<td>Déformation</td>
<td>1,6</td>
</tr>
<tr>
<td>Bol fendu</td>
<td>1,3</td>
</tr>
<tr>
<td>Autres</td>
<td>8</td>
</tr>
</tbody>
</table>

Synthèse de l’identification et de la documentation du problème

À partir des informations précédentes, il a été possible de proposer une schématisation présentant les principales relations entre les opérations et les risques d’atteintes musculo-squelettiques (figure 10). Trois types de contraintes musculo-squelettiques sont présentes à la double coulée. Il s’agit des efforts de manutention que l’on retrouve principalement dans les opérations de finition et de transfert des cuvettes dans les chariots, de transfert de la barbotine des bacs de récupération, de démoulage et de remoulage ainsi que de transfert de cuvettes sur la table. Il s’agit également des efforts de pression liés à l’utilisation des cônes de pâtissier et des serre-pièces. De plus, on retrouve des contraintes posturales lors du perçage des dessus de cuvettes à l’aide de la plume et à la finition des cuvettes. Ces contraintes musculo-squelettiques sont induites à la fois par l’aménagement du poste et l’outillage utilisé ainsi que par les activités de travail partagées. Ces dernières activités ont également un impact direct sur la qualité du travail. Les risques musculo-squelettiques semblent être confirmés par la hiérarchisation des sous-tâches par les travailleurs en fonction de leur pénibilité ainsi que par les accidents déclarés au coulage des cuvettes.
Figure 10. Schématisation des risques musculo-squelettiques à la double coulée des cuvettes

6.2 Choix des outils à améliorer

L’ensemble des résultats obtenus lors de l’étape de l’identification et de la documentation du problème a été présenté aux membres du comité de travail. En plus des chercheurs, les membres du comité pour l’entreprise étaient le coordonnateur et le représentant en santé et en sécurité du travail, le responsable de la maintenance et le contremaître pour le coulage.
Tableau 6 Matrice d’aide à la décision pour le choix des outils à améliorer

<table>
<thead>
<tr>
<th>OPÉRATIONS</th>
<th>Sondage</th>
<th>SST (n=18)</th>
<th>Qualité (modèle 415-3)</th>
<th>Commentaires sur solutions possibles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transfert cuvette</td>
<td>5</td>
<td>3</td>
<td>65# 1254 (2,44%)</td>
<td>Remet en question le procédé. À considérer en relation avec la tâche d’inspection.</td>
</tr>
<tr>
<td>finition matin</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Finition après 24h</td>
<td>4</td>
<td></td>
<td>72# 237 (0,46%) 1# 26 (0,05%)</td>
<td>Remet en question le procédé. À considérer en relation avec la tâche d’inspection.</td>
</tr>
<tr>
<td>Basculer moules</td>
<td>12</td>
<td></td>
<td></td>
<td>Faire l’entretien et la lubrification réguliers de l’équipement.</td>
</tr>
<tr>
<td>Bacs à barbotine</td>
<td>2</td>
<td>1 (urinoir)</td>
<td></td>
<td>Remet en question le procédé. Certains bacs posent des problèmes qui seront résolus par l’achat de bacs mieux adaptés.</td>
</tr>
<tr>
<td>Percer trous tops</td>
<td>3</td>
<td>3</td>
<td>29# 190 (0,37%)</td>
<td>Nouvelle conception de l’outil permettant de réduire les mouvements contraignants du poignet.</td>
</tr>
<tr>
<td>Cônes à pâtissier</td>
<td>8</td>
<td></td>
<td></td>
<td>Nouvelle conception de l’outil. Solutions concernant également la consistance de la barbotine.</td>
</tr>
<tr>
<td>« Topper »</td>
<td>7</td>
<td></td>
<td></td>
<td>Méthode de travail évitant de frapper les moules avec la paume de la main.</td>
</tr>
<tr>
<td>Retourner moules</td>
<td>9</td>
<td></td>
<td>52# 47 (0,09%)</td>
<td>Remet en question le procédé. L’opération se fait actuellement avec deux travailleurs.</td>
</tr>
<tr>
<td>Retirer pied moule</td>
<td>11</td>
<td></td>
<td>22# 377 (073%)</td>
<td>Solution déjà implantée avec l’utilisation d’un palan.</td>
</tr>
<tr>
<td>Démoulage/ remoulage</td>
<td>1</td>
<td>5</td>
<td>22#377 (0,73%) 1# 26 (0,05%) 3#17 (0,03%) 4#15 (0,03%) 2# 8 (0,02%)</td>
<td>Remet en question le procédé. Organisation du travail : possibilité d’alternance de cette opération contraignante avec la finition (moins contraignante).</td>
</tr>
<tr>
<td>Transfert cuvettes</td>
<td>6</td>
<td>2</td>
<td></td>
<td>Remet en question le procédé. Organisation du travail : possibilité d’alternance de cette opération contraignante avec la finition (moins contraignante).</td>
</tr>
<tr>
<td>Serre-pièces</td>
<td>11</td>
<td></td>
<td></td>
<td>Nouvelle conception du serre-pièces évitant de frapper avec la paume de la main.</td>
</tr>
<tr>
<td>Non classé</td>
<td>4</td>
<td></td>
<td>75#, 7#, etc</td>
<td></td>
</tr>
</tbody>
</table>

Suite à la présentation des résultats, une matrice de décision a été présentée au comité en vue de cerner les possibilités de solutions à court et moyen termes (tableau 6). L’information contenue dans cette matrice concernait principalement les résultats du sondage effectué par le génie conseil, les accidents musculo-squelettiques survenus entre 1995 et 1997, ainsi que les défauts de qualité répertoriés selon le numéro de code de l’entreprise. De plus, cette matrice présente une synthèse des commentaires recueillis après consensus. Il ressort que le choix des outils à améliorer s’est porté sur les opérations qui concernent le perçage des trous des dessus des cuvettes et l’utilisation des serre-pièces. Les figures 11 et 12 montrent l’outil utilisé au moment de l’étude pour percer les trous sur les dessus des cuvettes ainsi que son utilisation. Les principales contraintes se situent au niveau des mouvements du poignet.
Figure 11 Outil utilisé pour percer les trous dans les dessus des cuvettes

Figure 12 Utilisation de l’outil
6.3 Réalisation d’un premier prototype pour l’outil à percer

À partir des décisions prises à l’étape précédente, nous avons procédé à l’élaboration d’un premier prototype pour l’outil à percer. L’objectif de ce premier prototype était de servir de support concret aux réflexions permettant ainsi de mieux préciser les spécifications de la conception. Il a été conçu en tenant compte des exigences suivantes : éliminer le mouvement de torsion du poignet, garder l’outil simple et léger, s’adapter au procédé actuel ainsi que permettre l’éjection automatique de la carotte. Le prototype est présenté à la figure 13. Il est conçu en aluminium. Le principe de fonctionnement de l’outil consiste au transfert d’un mouvement de translation donné par le travailleur à un mouvement de rotation automatique exécuté par l’outil. La translation et la rotation simultanées de la lame lui permettent de percer la pièce. Un ressort permet le retour de la lame en position normale et une butée à l’intérieur de celle-ci éjecte la carotte. De plus, un support servant de guide a également été développé afin d’assurer l’introduction de la lame suivant l’angle requis et de support adéquat à l’outil.

Figure 13 Premier prototype de l’outil à percer avec son support-guide.

6.4 Présentation du premier prototype au comité de travail

Le premier prototype a été présenté au comité de travail composé des mêmes personnes qu’à l’étape du « choix des outils à améliorer » avec en plus la présence du magasinier dont l’expérience avec des outils est reconnue. L’objectif de la réunion visait à obtenir une première évaluation des caractéristiques de l’outil et de dégager des spécifications plus précises.

La présentation du prototype a suscité des réactions fort positives et a permis d’approfondir les aspects suivants : taille de l’outil, éjection efficace de la carotte dans une direction appropriée, course et mouvement de la lame, entretien et fragilité de l’outil. Par ailleurs, il s’est dégagé un consensus sur la nécessité de concevoir un système comportant autant d’outils que de trous à percer.
Des essais sur la ligne de production ont également été réalisés à cette étape afin de valider le concept. Pour ce faire, des couleurs ont essayé le prototype sur des pièces spécialement coulées à cet effet. Les points d’analyse suivants ont pu être dégagés :

- la rotation de la lame n’était pas assez prononcée : il est nécessaire de prévoir une rotation automatique de 180° sur une distance d’environ 2,5 cm ;
- l’éjecteur pour la carotte fonctionne partiellement selon la consistance de la pièce ;
- dans son ensemble, l’outil fonctionne bien.

Ces premiers essais étant encourageants, nous avons procédé à la conception d’un second prototype intégrant les spécifications formulées à cette étape.

6.5 Réalisation d’un second prototype pour l’outil à percer

Le second prototype a également été fabriqué en aluminium. Sa taille a été réduite considérablement en positionnant le ressort à l’extérieur du corps de l’outil. Les mouvements de translation et de rotation de la lame ont été ajustés en fonction des spécifications requises. Le système d’éjection de la carotte a été légèrement modifié. Pour l’instant, le système de support n’a pas été revu. La figure 14 montre le second prototype conçu à cette étape.

![Figure 14](image.png)

Figure 14 Second prototype de l’outil à percer.

Par la suite des essais ont été réalisés sur des pièces misent à notre disposition. L’outil s’est avéré opérationnel. Toutefois, l’éjection de la carotte n’était pas aussi efficace que souhaitée. À quelques occasions, la carotte restait prise dans la lame. Pour remédier à cette situation, des recommandations ont été formulées : modifier le système d’éjection en réduisant la course de la lame afin qu’elle rentre davantage dans l’outil ; rendre la surface de contact de l’éjecteur plat plutôt que concave. De plus, les couleurs ont mentionné que pour faciliter l’éjection, ils modifiaient eux-mêmes la forme de l’embout de la lame selon l’angle de pénétration.
Figure 15 Test du second prototype.

6.6 Présentation du second prototype au comité de travail

La direction de l’usine s’est montrée fort intéressée par les résultats obtenus et a manifesté son intention de poursuivre le développement de l’outil. Par contre, certaines préoccupations concernant l’entretien et la fragilité de l’outil ont été exprimées. Toutefois, le fait que l’outil soit facilement démontable permet d’en assurer un entretien facile. Pour ce qui a trait à la fragilité de l’outil, il suffira de prévoir un système de rangement placé à chaque extrémité du banc pour éviter les pertes de temps. Par la suite, les spécifications pour la modification du gabarit et du support-guide ont été dégagées. Il a été convenu de changer le gabarit actuel : réduire son poids, modifier le mode d’appui.

La réduction du poids a été envisagée soit, en diminuant l’épaisseur du gabarit actuel fabriqué en résine ou soit, en le fabriquant en aluminium. Dans le premier cas, la fabrication peut se faire dans l’usine alors que dans le second cas, il faut sous-contracter à l’extérieur. Dans la poursuite des essais, le technicien du département de moulage a été mandaté pour fabriquer un gabarit en résine moins épais.
La modification du mode d’appui vise à développer un système qui évite l’appui complet du gabarit sur toute la surface supérieure de la pièce. Le nouveau gabarit pourrait s’appuyer directement sur les moules.

6.7 Réalisation finale du système (outil, support-guide, gabarit et mode d’appui)

À cette étape, il n’y a pas eu de modification de l’outil, mais plutôt la réalisation de l’ensemble des dessins techniques des composantes entrant dans la conception de l’outil. La figure 16 montre le plan d’ensemble de l’outil. L’annexe A présente les dessins techniques des diverses composantes.

![Figure 16. Plan du prototype final de l’outil](image)

Un support-guide a été conçu en fonction du nouvel outil et des gabarits. Il est montré à la figure 17. Le support-guide est constitué d’un anneau cylindrique d’un diamètre s’ajustant au corps de l’outil et d’une tige ronde servant de guide. Cette tige s’insère dans des orifices spécialement aménagés de façon à positionner l’outil selon l’angle voulu.

Les figures 18 et 19 présentent les deux propositions de gabarits et d’appuis sur les moules. Le premier est proposé par le département de moulage. Le gabarit ainsi que les appuis sont fabriqués avec le matériel actuellement utilisé par la compagnie (e.g. résine). Le second concept est proposé par les chercheurs. Il est conçu pour être fabriqué en aluminium. Il comporte trois appuis qui se placent sur les repères servant à positionner le dessus du moule. Enfin, la figure 20 montre une vue de l’ensemble du système avec un seul outil en place.
Figure 17. Support-guide de l’outil

Figure 18. Appui du gabarit proposé par le département de moulage
6.8 Transfert du système à l’entreprise

Une fois le développement du système complété, le comité s’est réuni afin de prendre connaissance de la version finale. En plus des chercheurs, le comité était composé du directeur de l’usine, de la nouvelle coordonnatrice en santé et sécurité du travail, du représentant en santé et sécurité des travailleurs et du technicien du département de moulage. L’objectif de cette dernière étape visait à assurer le transfert du concept final à l’entreprise afin qu’elle puisse concevoir le système en entier (e.g. avec ses 20 outils). La décision finale concernant le choix du type de gabarit-appui n’était pas encore prise puisque le coût de chacune de ces alternatives n’avait pas encore été évalué.
6.9 Réalisation d’un serre-pièce

Comme prévu dans la détermination des choix d’outils à améliorer, lors de la réunion finale nous avons proposé un nouveau concept de serre-pièce. Les mêmes étapes que pour l’outil à percer le dessus des cuvettes ont été suivies dans la démarche de conception d’un nouveau serre-pièce. Cependant, le problème de conception étant plus facile à résoudre, le déroulement du processus a été plus rapide. Un premier prototype a été présenté et testé avec le groupe de travail incluant la présence des directeurs de l'établissement et de production. Celui-ci s'est avéré pouvant remplir correctement sa fonction. La présence d'une poignée permettait d'éviter de serrer en donnant des coups avec la paume de la main. Cependant, la poignée de ce prototype étant recourbée, il s'est avéré durant les tests que celle-ci pouvait être accrochée par les travailleurs ainsi que par un tuyau conduisant de l'air comprimé. Elle a donc été modifiée tel que le montre la figure 21. Les essais de ce second prototype réalisé par trois couleurs ont été concluants. Le nouveau serre-pièce est constitué d’une serre « Destaco » montée sur un support d’acier en « C ». La pression exercée par la serre permet de joindre fermement les deux parties du moule. Cette proposition a été acceptée par le comité et devrait être mise en application dans un avenir rapproché.

![Figure 21](image1.png)
Figure 21. Vue d’ensemble du nouveau serre-pièce

7. Discussion

7.1 Les solutions technologiques pour réduire les risques de TMS

La recherche de solutions technologiques pour la réduction des risques de TMS basée sur l’évolution mécanique de l’outillage plutôt que sur son automatisation rend possible la conception d’outils que l’entreprise peut plus facilement intégrer à ses opérations. Ainsi, cela a permis de lever un des obstacles auquel l’entreprise faisait face en privilégiant la recherche de solutions au TMS par l’automatisation.

Cependant, dans le cas présent, cette orientation comporte également des limites à la réduction des risques de TMS. En effet, ces solutions technologiques sont possibles lorsqu’elles peuvent s’insérer dans le procédé de production sans le modifier profondément. Dans ce cas contraire, on retrouve les mêmes obstacles concernant l’automatisation puisque celle-ci ne peut se faire sans
remettre en question le procédé dans son ensemble ou en partie. Au poste de coulage, ce problème se pose pour la finition du matin, le démoulage-remoulage et le vidage des bacs de barbotine. Aussi, avec le groupe de travail, il a été estimé que le niveau de difficulté était actuellement trop élevé et les risques d’échec trop grand pour choisir de réduire en priorité le risque de TMS par la recherche de solutions technologiques dans ces opérations. En effet, compte tenu des échecs précédents, il était important de montrer assez rapidement qu’il était possible de concevoir des solutions technologiques pour prévenir les TMS. De plus, la durée du projet et la disponibilité des ressources de l’entreprise ne permettait pas de traiter de ces problèmes avec des chances de réussites.

Cependant, pour l’opération de finition du matin, comportant des risques associés à la manutention, la révision du procédé a été amorcée avant la fin du projet. Cette révision a été possible, car parallèlement au projet de conception des outils, la nouvelle direction de l’entreprise a entrepris une démarche d’amélioration de la qualité. Celle-ci menait à des conclusions relativement aux constatations que nous avions faites sur la réalisation de la même tâche de finition des cuvettes aux postes de coulage et de finition. Aussi, la direction a entrepris des discussions avec le syndicat pour réorganiser cette tâche entre les deux postes.

Par contre pour le démoulage et reconstitution du moule, et le vidage de la barbotine, cette révision n’a pas été faite. Pour ces deux cas, les solutions proposées portent plutôt sur les méthodes de travail afin d’aider les opérateurs à mieux gérer les risques de TMS.

7.2 L’adaptation de la démarche de design et l’intégration de l’ergonomie

La démarche de design choisie au début de l’étude comme élément de référence a été modifiée sur plusieurs points :

La première étape d’identification du problème centré principalement sur les risques de TMS a été élargie dans deux directions. Premièrement, le problème a été documenté non seulement en ce qui touche la SST et les TMS en particulier, mais également en ce qui concerne la qualité. Ainsi, l’étude des données de l’entreprise a permis notamment de montrer l’origine commune de problèmes affectant la qualité et la SST. Deuxièmement, l’analyse ergonomique de l’activité des couleurs a servi à décrire plus précisément l’ensemble des contraintes, des méthodes et des stratégies utilisées par les couleurs. Leur analyse a contribué à préciser les spécifications de design en relation avec l’activité des couleurs. De plus, la présentation des résultats au groupe de travail a contribué à renforcer la confiance des membres envers les chercheurs, ces derniers ayant montré qu’ils avaient bien compris le travail de coulage.

La seconde étape porte sur le choix des outils à améliorer. Les priorités de recherches de solutions ont été effectuées selon l’importance du risque de TMS et la complexité de la solution technologique. Cette dernière a nécessité la conceptualisation des solutions possibles. Ainsi, contrairement à la démarche de conception classique où la conceptualisation se trouve après que le problème soit identifié, celle-ci survient beaucoup plus tôt, dans le choix même des problèmes à solutionner en priorité.

La troisième étape concerne la conception de prototypes. Leur fabrication répond à deux objectifs. Le premier consiste à faciliter la représentation, et les échanges avec les travailleurs sur
le concept de solution proposé par les chercheurs. Il aide à surmonter les différences de langage entre concepteurs et travailleurs soulignées par certains auteurs dans le design participatif (Bower et Pycock, 1994 ; de Cindo et Simone, 1993). La concrétisation du concept permet une représentation plus précise de l’activité future. Le deuxième objectif, correspond davantage à l’utilisation du prototype dans la démarche classique de design. Il sert à tester le design pour le faire évoluer et aboutir à la solution finale.

La dernière étape dans le présent projet correspond au transfert de la solution à l’entreprise. Dans le présent projet, il était prévu que les chercheurs aident l’entreprise à la concrétisation des concepts permettant de concevoir de nouveaux outils, mais ensuite il revenait à l’entreprise de prendre en charge leur fabrication. Ce transfert a été facilité par la venue des directeurs de l’établissement et de la production dans le groupe de travail. L’entreprise a pris en charge la fabrication et l’implantation des nouveaux outils à l’ensemble des postes de la double coulée des cuvettes. Les délais de mise en place de la fabrication n’ont pas permis, à l’intérieur de ce projet, de réaliser une évaluation systématique de ces nouveaux outils sur la réduction des risques de TMS et le travail des couleurs.

7.3 Le déroulement du processus social

Le déroulement du processus social dans le projet montre bien que l’implication de la direction peut varier et évoluer tout au long de l’intervention. Les changements dans la Direction de l’entreprise ont modifié dès le début le modèle d’implication des partenaires dans le protocole d’intervention. La nouvelle Direction comme la précédente s’est montrée intéressée par le projet sans toutefois participer directement au groupe de travail, mais en chargeant le coordonnateur en SST d’effectuer la coordination avec les chercheurs. Son implication est devenue plus effective avec l’intérêt suscité par les prototypes de l’outil à percer et du serre-pièce. Dès lors, elle s’est engagée directement dans la coordination du projet.

Le transfert des solutions a été facilité par leur applicabilité mais également par les orientations de la nouvelle Direction concernant les améliorations technologiques. On peut se demander, si l’applicabilité des solutions aurait été un élément suffisant pour que l’ancienne direction s’implique davantage et accepte l’implantation des nouveaux outils.

Le design des outils a évolué grâce à la contribution de certains travailleurs choisis pour leur expérience et leur volonté d’améliorer leur travail, par le contremaître, le coordonnateur et le représentant en SST. Leur participation a permis de se rendre compte rapidement qu’il ne suffirait pas, pour que la solution concernant l’outil à percer soit adoptée, de concevoir un simple outil éliminant le risque de TMS occasionné par la rotation du poignet. En effet, les travailleurs souhaitaient également une solution plus générale visant à faciliter le travail. La solution devenait un peu plus complexe à concevoir, mais permettait de s’assurer qu’elle serait acceptée plus facilement par l’ensemble des travailleurs.
8. Conclusion

La démarche qui a été mise en œuvre a permis d’aboutir à la conception d’outils simples et opérationnels, alors que l’entreprise éprouvait antérieurement des difficultés à mettre en application des solutions adaptées. La mise en place d’une nouvelle direction a facilité les changements proposés. Toutefois, la bonne volonté de la direction n’aurait pas été suffisante sans une démarche structurée qui permet de proposer des solutions tenant compte de l’ensemble des critères relatifs à la SST, la qualité et la productivité.

Cette démarche repose sur la participation des intervenants de l’entreprise en fonction des expertises recherchées à un moment donné, ce qui allège considérablement le processus. De plus, en tenant compte les aspects qualité, cette démarche peut s’intégrer plus facilement dans les programme d’amélioration continue de la production. Une telle intégration permettrait d’une part, de considérer dans la prévention des TMS les aspects de qualité et de productivité, et d’autre part, dans les approches de qualité et de productivité de traiter des TMS. Ainsi l’entreprise qui a adopté une programmation d’amélioration continue de la qualité pourrait en même temps aborder des problématiques en SST, ce qui fait actuellement défaut. L’approche d’amélioration continue Kaizen pourrait avantageusement intégrer cette démarche (Berger, 1997).
Bibliographie

